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We make a high-precision Monte Carlo study of two- and three-dimensional 
self-avoiding walks (SAWs) of length up to 80,000 steps, using the pivot algo- 
ri thm and the Karl>-Luby algorithm. We study the critical exponents v and 
2 /14-  7 as well as several universal amplitude ratios; in particular, we make 
an extremely sensitive test of the hyperscaling relation dv = 2/14-  3'. In two 
dimensions, we contrtrm the predicted exponent v =  3/4 and the hyperscaling 
relation; we estimate the universal ratios (R2)/(R2)=O.14026++_O.O0007, 
( R 2 ) / (  R 2 ) = 0.43961 + 0.00034, and ~ *  = 0.66296 + 0.00043 ( 68 % confidence 
limits). In three dimensions, we estimate v = 0.5877 + 0.0006 with a correction- 
to-scaling exponent A I = 0.56 _ 0.03 (subjective 68 % confidence limits). This 
value for v agrees excellently with the field-theoretic renormalization-group 
prediction, but there is some discrepancy for / i t .  Earlier Monte Carlo estimates 
of v, which were ~0.592, are now seen to be biased by corrections to scaling. 
We estimate the universal ratios (R2)/(R2)=O.1599++_O.O002 and ~ * =  
0.2471 -I-0.0003; since ~ * >  0, hyperscaling holds. The approach to ~ *  is from 
above, contrary to the prediction of the two-parameter renormalization-group 
theory. We critically reexamine this theory, and explain where the error lies. In 
an appendix, we prove rigorously (modulo some standard scaling assumptions) 
the hyperscaling relation dv = 2A 4 -- 3, for two-dimensional SAWs. 
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1. I N T R O D U C T I O N  

The self-avoiding walk (SAW) is a well-known lattice model of a polymer 
molecule in a good solvent, tl) Its equivalence to the n = 0  limit of the 
n-vector model ~]-7) has also made it an important test case in the theory of 
critical phenomena. 

In this paper we report the results of an extensive Monte Carlo study 
of two- and three-dimensional SAWs of length up to 80,000 steps, using the 
pivot algorithm, cs-~~ We make a high-precision determination of the 
critical exponents v and 2A4--y as well as several universal amplitude 
ratios. In particular, we make an extremely sensitive test of the hyper- 
scaling relation dv=2A4- ) , ,  which plays a central role in the general 
theory of critical phenomena (Section 1.1). 

Our results have also led us to reexamine critically the conventional 
theory of polymer molecules, the so-called "two-parameter renormalization- 
group theory. ''~H:2) Indeed, such a reexamination is unavoidable, as our 
Monte Carlo data are inconsistent with this theory as it has been heretofore 
applied. But this is because--as we explain in Section 1.2--the theory has 
heretofore been applied incorrectly! These points were first made three 
years ago by Nickel ~3) in an important but apparently underappreciated 
paper; they have recently been extended by one of us. (]4"Is) 

1.1. The Problem of Hyperscaling 

One of the key unsolved problems in the theory of critical phenomena 
has been the status of the so-called hyperscaling relations (scaling laws in 
which the spatial dimension d appears explicitly). These relations have long 
been known to rest on a much more tenuous physical basis than the other 
scaling laws. (~6-22) Indeed, it has been understood since the early 1970s that 
hyperscaling should not hold for systems above their upper critical dimen- 
sion d,: for d >  d, the critical exponents are expected to be those of mean- 
field theory, and these exponents satisfy the hyperscaling relations only at 
d--du.  6 (For models in an n-vector universality class, including the SAW, 
du equals 4.) It has generally been believed that hyperscaling shouM hold in 
dimensions d < d,,  but in our opinion there is no particularly compelling 
justification for such a belief (although the claim itself is probably correct). 

5 These computations were carried out over a 4-year period on a variety of RISC work- 
stations. The total CPU time was several years, but we have by now lost track of exactly 
how many! 

6 This belief has now been confirmed by rigorous proofs of the failure of hyperscaling for the 
Ising model in dimension d>4, tT) the self-avoiding walk in dimension d>~5, tj'2s'24) and 
spread-out percolation in dimension d>6: z5"26~ 
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Hyperscaling in the three-dimensional Ising model is the subject of a con- 
troversy that has been raging for 25 years, and which is still not completely 
settled (see refs. 17 and 27-42 for series-extrapolation work and refs. 43--48 
for Monte Carlo work). Dimension d =  2 is a special case: here hyperscaling 
holds for essentially topological reasons, as has been proven rigorously by 
Aizenman (49) for the Ising model and is proven here (modulo some 
standard scaling assumptions) for the SAW (see Appendix A). We remark 
that hyperscaling is also of interest in quantum field theory, where it is 
equivalent to the nontriviality of the continuum limit for a strongly coupled 
~o 4 field theory. (5~ 

Although the hyperscaling relations appear naively to be ineluctable 
consequences of the renormalization-group approach to critical phenomena, 
closer examination reveals a mechanism by which hyperscaling can fail: the 
so-called "dangerous irrelevant variables. ''7 But the much more difficult 
question of whether this violation actually o c c u r s  in a given model can be 
resolved only by detailed calculation. Unfortunately, a direct analytical 
test of hyperscaling appears to be possible only at or in the immediate 
neighborhood of a Gaussian fixed point, that is, for asymptotically free 
theories ~61~4) or for small e = d , -  d or large n. ~5-68) We note that the real- 
space  R G  (69'7~ and field-theoretic R G  (71) frameworks, as typically used in 
approximate calculations, implicitly a s s u m e  the hyperscaling relations, so 
they cannot be used to t e s t  hyperscaling. 

It is therefore of interest to make an unbiased numerical test of hyper- 
scaling, working directly from first principles. One approach is series 
extrapolation, c72'73) which affords a direct test of universality and scaling 
laws, including hyperscaling. It gives numerical results of apparently very 
high accuracy: the claimed (subjective) error bars on critical exponents are 
on the order of 0 . 0 0 1 - 0 . 0 0 5 ,  c73~ which is comparable to the best alter- 
native calculational schemes. However, as is inherent in any extrapolation 
method, the results obtained depend critically on the assumptions made 
about the singularity structure of the exact function, notably the nature of 
the confluent singularity, if any.  ~33'38"41'74'75'73) Indeed, estimates by dif- 
ferent methods from the same series sometimes differ among themselves by 
several times their claimed error bars. This, together with systematic dif- 
ferences between lattices of the same dimension, accounts for much of the 
controversy over hyperscaling. Quite a few extra terms would be needed to 
resolve these discrepancies in a convincing manner. (33~ Unfortunately, 
the computer time required to evaluate the series coefficients grows 

7 This mechanism was proposed independently by Fisher ~55) and Wegner and Riedel (ref. 56, 
p. 250 and footnote8) in the early 1970s. For further discussion, see also ref. 57, 
Section VII.4, ref. 58, ref. 59, Appendix D, and ref. 60, Section 5.2. 
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exponentially with the number of terms desired, while the extrapolation 
error is proportional to some inverse power of the number of terms (the 
power depends on the details of the correction-to-scaling terms and the 
extrapolation method). 

In a Monte Carlo study, by contrast, one aims to probe directly the 
regime where the correlation length ~ is ~> 1. (For SAWs this corresponds 
to a chain length N~> 1.) The method affords a direct test of universality 
and scaling laws, including hyperscaling. In practice, however, it has been 
extremely difficult to obtain good data in the neighborhood of the critical 
point. There are two essential difficulties: finite system size (76-78) and critical 
310wing-down. (79-sl) For spin models and lattice field theories, these two 
factors together imply that the CPU time needed to obtain one "effectively 
independent" sample grows as ~ Ld~Z> C a+'-, where d is the spatial dimen- 
sion of the system and z is the dynamic critical exponent of the Monte 
Carlo algorithm, s (This situation may be alleviated somewhat by a new 
finite-size-scaling technique ts2) that yields accurate estimates of infinite- 
volume quantities from Monte Carlo data on lattice sizes L ~ 4.) The situa- 
tion for SAWs is rather more favorable: one can simulate a SAW directly 
in infinite space, with no fmite-size corrections or L d factor in the CPU 
time. There is, to be sure, critical slowing-down; but vast progress has 
been made over the last decade or so in inventing new and more efficient 
algorithms for simulating the SAW. ts3) In particular, using the pivot algo- 
rithm, ~s-~~ one can generate an "effectively independent" N-step SAW (at 
least as regards global observables) in a CPU time of order ~ N .  (1~ 

(This is the best possible order of magnitude, since it takes a time of order 
N merely to write down an N-step walk!) Since ~ ~ N ~, this corresponds to 
a CPU time ~( l /v  in a spin system--which (if d~> 2) is better than ~~d+~ 
even if z = 0! So the SAW is a uniquely favorable "laboratory" for studying 
the problem of hyperscaling. 

1.2. Wh ich  Quant i t ies  Are Universal? 

Over the past four decades, various mathematical models have been 
employed to describe the behavior of linear polymer molecules in a good 
solvent. 9 Among these models are the self-avoiding walk, ~) the bead-rod 
model, Is4) and the continuum Edwards model. (85-89'11'12) The detailed 
behavior depends on the specific model chosen, just as the detailed behavior 

8 Conventional local algorithms have z ~ 2, while the new collective-mode algorithms t79-81~ 
can have z ,~ 2 and in some cases even z = 0. 

9 Here "good solvent" means that we work at any fixed temperature strictly above the theta 
temperature for the given polymer-solvent pair. 
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of real polymer molecules depends on the particular chemical structure of 
the polymer and solvent (and on the temperature). However, it has long 
been understood that some aspects of polymer behavior become universal 
in the long-chain limit N ~  oo (where N is the number of monomers in the 
chain). Unfortunately, there has been considerable confusion about which 
quantities are universal and which are not. In this subsection we summarize 
recent work of Nickel c13) and one of us (14"1s) which clarifies this issue. (For 
further discussion, see Section 5.2 below). 

Standard renormalization-group (RG) arguments predict(13) that the 
mean-square end-to-end distance (R2) ,  the mean-square radius of gyration 
(RE), and the second virial coefficient a~m~ 2 2 "'2 - (N M . . . . . . .  /NAvogadro)A2 
of any real or model polymer chain should have the asymptotic behavior l~ 

(R~)  =ARN2~(1 + b ~ ) N - ~ '  + ... ) (1.1) 

(R~)  = A ,  NZV(1 + b ~ ] N - ' J t +  ... ) (1.2) 

A~m~ + b ~ > N  -a'  + ... ) (1.3) 

as N--* 0% where d is the spatial dimension. 11 The critical exponents v and 
(1) (1) (1) A~ are universal. The amplitudes A m, AR~, AA, bR~, bR,, bA are non- 

universal; in fact, even the signs of the correction-to-scaling amplitudes 
b~l)R,, b~], and b~ ) [and their various combinations such as b~ )-- 
b]~)- (d /2)  b~]] are nonuniversal. However, the RG theory also predicts 
that the dimensionless amplitude ratios ARc~An,, A a/A~Z, , b~a) /b {~) and Rg I Re ' 

a / ~  are universal/~3'9~ 
So there is no reason why the correction-to-scaling amplitudes should 

have any particular sign. In the continuum Edwards model, the effective 
exponents V,fr.R, = �89 log(R~)/d  log N and v,rc R = �89 log(R2_)/d log N and 
the interpenetration ratio ~---- 2(d/12rc) a/2 A ~mo~:/(R2g) el2 all approach their 
asymptotic values f rom below, (H'12"91-93) that is, b~], b ] ) > 0  and I,~).~n 
On the other hand, high-precision Monte Carlo data on lattice self- 
avoiding walks--see Section 4 below, as well as ref. 13--show dearly that 
these quantities approach their asymptotic values f rom above; and the same 
occurs in the bead-rod model with sufficiently large bead diameterJ 94) 
Indeed, this behavior is almost obvious qualitatively: short self-avoiding 
walks behave roughly like hard spheres; only at larger N does one see the 
softer excluded volume (smaller ~) characteristic of a fractal object. In any 

~o Definitions of (R~)  and (R ~)  for the SAW can be found in (2.3)-(2.4) below. Here A~ =~ 
denotes the second virial coefficient in "theorist's units" (i.e., per pair of molecules rather 
than per pair of  monomers); it is defined in (2.13) for generic molecules and in (2.15) for 
the SAW (and is there called Bz). 

H In (1.3) we have assumed for simplicity that the hyperscaling relation dv = 2A 4 - y  is valid. 
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case, all these models are in excellent agreement for the leading universal 
quantities v, AR~/AR~ and ~*  = 2(d/12rc) d/2 AA/Ad/R2, and they are in rough 
agreement for the universal correction-to-scaling quantities A1, h,)/htl~ Rg I ~  Re ' 
and kt l )a , . )  

~A l Y R e "  

It is thus misguided to analyze the experimental data in the good- 
solvent regime by attempting to match the real polymer molecules to the 
continuum Edwards model via the correspondence ZEdwards = aN 1/2 (where 
a is an empirically determined scale factor depending on the polymer, 
solvent, and temperature)12: the continuum Edwards model can predict 
only the universal quantities. Indeed, there is evidence t95-98) that real 
polymers in a sufficiently good solvent behave like self-avoiding walks, i.e., 
they approach ~* from above; in this case they cannot be matched to any 
value of ZEdw~d,. This behavior has heretofore been considered paradoxical; 
in fact, it is quite natural. (Huber and Stockmayer ~96~ attributed this 
behavior to the effects of chain stiffness. In fact, as pointed out by 
Nickel, tj3) chain stiffness is quite irrelevant here, as the effect occurs also 
for perfectly flexible chains, such as self-avoiding walks or the bead-rod 
model.) 

These points have been made previously by Nickel. t~3) Similar com- 
ments have been made with regard to liquid-gas critical points by Liu and 
Fisher. ~99~ 

In summary, the error of all two-parameter theories is to fail to dis- 
tinguish correctly which quantities are universal and which are nonuniver- 
sal. In particular, the modern two-parameter theory begins from one 
special model--the continuum Edwards model--and assumes (incorrectly) 
that it can describe certain aspects of polymer behavior (e.g., the sign of 
approach to ~*)  which in reality are nonuniversal. 

Remark. A very different limiting behavior is obtained (in dimen- 
sion d < 4 )  if we take simultaneously N ~  ~ and T--* To such that 
x = N ~ ( T  - To) remains fixed, for a suitable crossover exponent ~b. In a 
separate work t~4'~5~ one of us has argued that it is precisely this universal 
crossover scaling behavior in an infinitesimal region just above the theta 
temperature that is described by the continuum Edwards model. 

1.3. Plan of This Paper 

The plan of this paper is as follows: In Section 2 we review the needed 
background information about the self-avoiding walk and the pivot algo- 
rithm. In Section 3 we analyze several algorithms for computing the second 

12 See, for example, the comparisons between theory and experiment in ref. 11, Section 10.F, 
and ref. 12, Section 15.3. 
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virial coefficient; this section can be skipped by readers whose main interest 
is in the results. In Section 4 we present and analyze our Monte Carlo data 
for self-avoiding walks in two and three dimensions. In Section 5 we com- 
pare our results with previous work, discuss further the interpretation of 
the sign of approach to ~u*, and discuss prospects for the future. In 
Appendix A we prove some geometric bounds for subsets of Za; as a 
corollary, we prove hyperscaling for SAWs in dimension d = 2 .  In 
Appendix B we discuss the problem of ensuring adequate thermalization 
for the pivot algorithm. In Appendix C we discuss some subtleties involved 
in the statistical analysis of our data. In Appendix D we make a few 
remarks on the field-theoretic calculations of universal amplitude ratios. In 
Appendix E we present a simple renormalization-group flow that illustrates 
why the field-theoretic fl-function should be expected to be nonanalytic at 
its fixed point g*. 

2. B A C K G R O U N D  A N D  N O T A T I O N  

2.1. The Se l f -Avo id ing  W a l k  ( S A W ) :  A Rev iew  

In this section we review briefly the basic facts and conjectures about 
the SAW that will be used in the remainder of the paper. Let ~ be some 
regular d-dimensional lattice. Then an N-step self-avoiding walk (SAW) co 
on .W is a sequence of distinct points coo, co~ ..... con in ~ '  such that each 
point is a nearest neighbor of its predecessor. For simplicity we shall 
restrict attention to the simple (hyper)cubic lattice 7/a; similar ideas apply 
with minor alterations to other regular lattices. We assume all walks to 
begin at the origin (co o = 0) unless stated otherwise, and we let ~N be the 
set of all N-step SAWs starting at the origin (and ending anywhere). 

First we define the quantities relating to the number (or "entropy") of 
SAWs: Let cA, [resp. c~(x)] be the number of N-step SAWs on 7/a starting 
at the origin and ending anywhere [resp. ending at x].  Then CN and cN(x) 
are believed to have the asymptotic behavior 

c~v~ lzNNr-I (2.1) 

cN(x) ~/zNN ~'~"g- 2 (x fixed # 0) (2.2) 

as N ~  oo; here p is called the connective constant of the lattice, and y 
and ~si,~ are critical exponents. The critical exponents are believed to be 
universal among lattices of a given dimension d. For rigorous results 
concerning the asymptotic behavior of cA, and Cu(X), see refs. 1, 23, 24, 
and 100. 
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Next we define several measures of the size of an N-step SAW (some 
other measures of the size of a SAW are defined in Appendix A): 

�9 The squared end-to-end distance 
2 R e - c o  2 (2.3) 

�9 The squared radius of gyration 

R 2 =  1 ~ , (  1 N ) 2 
co; Y', c%- (2.4a) 

g N + l i = o ~  N + l j = o  / 

_ / 1 N \ 2  

l ~ co 2 -- ~-~---~-'~ i ~o coi) (2.4b) 
N +  1 iffio = 

1 N 

2 ( N +  1) 2 ~ (co _coj)2 (2.4C) 
i,j=O 

�9 The mean-square distance of a monomer from the endpoints 

1 n 
E [co,~ + (co,- con) 2] (2.5) RT" 2 ( N +  1)i=o 

We then consider the mean values 2 2 (Re)N,  (Rg)N , and (R~)N in the 
probability distribution which gives equal weight to each N-step SAW. 
Very little has been proven rigorously about these mean values, but they 
are believed to have the asymptotic behavior 

2 2 "~ (R e> n ,  ( (R~,> n .Rg) N, ~ N 2v (2.6) 

as N ~  ~ ,  where v is another (universal) critical exponent. Moreover, the 
amplitude ratios 

R~')N (2.7) A N = <  2 
<R~>n 
< 2 R,,>N 

= ( 2 . 8 )  Bn <R~>n 

are expected to approach universal values in the limit N - *  oo. 13 Indeed, the 
full probability distribution of CON is expected to scale as 

CN(X) ~ N -a~f(x/NV) (2.9) 
CN 

13 Sometimes the notation bl = 6 (R~) / (  R, z) is used instead. In ref. 90, Section 9, (Rg)/(R,)2 2 
is denoted PG/Pu. In ref. 101, (R~)/(R~) and (R~)/<R~) are denoted F/C and G/C, 
respectively. These articles also discuss several other universal amplitude ratios. 
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as N--* o% for a suitable scaling function f (also universal  modulo  a single 
nonuniversal  scale factor); and f is expected to be ro ta t ion- invar iant .  14 All 
these beliefs can be subsumed in the even more  general  assert ion that  the 
probabi l i ty  d is t r ibut ion of  the SAW, with lengths rescaled by N ", converges 
weakly as N ~ oo to some well-defined probabi l i ty  measure  on a space of 
cont inuum chains. ,s 

Final ly,  let eN,.m be the number  of  pairs  ((0(i), (0(2)) such that  (0(~) is 
an Nl -s tep  SAW start ing at  the origin, co ~2) is an Nu-step SAW start ing 
anywhere, and (0(1) and  co ~21 have at  least one poin t  in c o m m o n  (i.e., 
oo(l)n (012)# ~ ) .  Equivalent ly,  we can write cu,.N2 in terms of walks that  
both  start  at  the origin: 

cm.uz = ~ y' T(co li), co (2)) (2.10) 
CO 11 } E ~9~ CO (2) E ~'N2 

where 

T((,o (1), (0 (2)) = # { x ~ 7/d: (.0 (I) ~ ((0(2) + X) :~ ~ } (2.1 1 ) 

is the number  of  t ranslates of  co ~2) that  somewhere intersect (0(1). It is 
believed that  

C NI ,N2 ~ / ANt + N2(NI N2) (2~4 + ) '-  2)/2 g( N 1/N2) (2.12) 

as N~, N2--* Go, where A4 is yet another  (universal)  critical exponent  and 
g is a (universal)  scaling function. 

The quant i ty  cm,u  2 is closely related to the second virial coefficient. To 
see this, consider  a ra ther  general  theory  in which "molecules" of  various 
types interact.  Let the molecules of type i have a set S, of "internal  states," 
so that  the complete  state of  such a molecule is given by a pair  (x, s) where 
x s 7/e is its pos i t ion and s e S; is its internal  state. Let  us assign Bol tzmann 
weights (or  "fugacities") Wi(s)  [s ~ Si] to the internal  states, normal ized  so 
that  Zs~s, We(s )=  1; and  let us assign an interact ion energy ~ ( ( x , s ) ,  
(x ' , s ' ) )  [ x , x ' e Z  d, s eS~ ,  s ' ~ S j ]  to a molecule of  t y p e /  at  ( x , s )  

t4 Actually, (2.9) is claimed to hold only for Ixl of order N". The precise statement of (2.9) 
is therefore that the limit 

f(y) - lira N d*' (cu(N"y))/cn 
N ~ o o  

exists for each y=~), and that 0 < f ( y ) <  oo. 
,s Very recently, Hara and Slade t'03'24~ have proven that the SAW in dimension d~> 5 con- 

verges weakly to Brownian motion when N ~  oo with lengths rescaled by CN t~ for a 
suitable (nonuniversal) constant C. It follows from this that (2.6) holds with v= 1/2, and 
also that (2.7)/(2.8) have the limiting values A~o = 1/6, B~ = 1/2. Earlier, Slade tl~176 had 
proven these results for sufficiently high dimension d. See also ref. 1. 
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interacting with one of typej  at (x', s'). Then the second virial coefficient 
between a molecule of type i and one of typej  is (mS) 

B~'J)=~ ~ ~" W,(s) Wj(s')[1--e -~'j"~ (2.13) 
s ~ S i  x '  e Z  a 
$' ~ Sj 

In the SAW case, the types are the different lengths N, the internal states 
are the conformations co ~ 6aN starting at the origin, the Boltzmann weights 
are Wu(co) = 1/c~ for each co ~ 6P~, and the interaction energies are hard- 
core repulsions 

y.Njv,((x, co), (x,, co,))= { O m  if (co+x)c~(co'+x')~otherwise (2.14) 

It follows immediately that 

B(N~.N., ) C~v,,~v2 (2.15) 
2 

2C Nj C N 2 

The second virial coefficient B~_ N"N2) is a measure of the "excluded 
volume" between a pair of SAWs. It is useful to define a dimensionless 
quantity by normalizing B~_ N~'N~-) by some measure of the "size" of these 
SAWs. Theorists prefer ( R  2) as the measure of size, while experimentalists 
prefer ( R  2) since it can be measured by light scattering. We thus define 
the theorists' interpenetration ratio 

( d ~  a/2 B~2 N'm ( d ~ a/2 c~.N (2.16) 
7tR, A'-- 2 \2rt / (R2)~2=\-}-~rcj c~(R2)~ 2 

and the (usual) interpenetration ratio 

( d ~a/2 B~N.m _ (  d ~a/2 CN.N (2.17) 
g"u =- 2 \i-~nn j ( R ~ ) g~ - \-i~-~trt j c w.,2 / 0 2 \ g / N 

(for simplicity we consider only N~ = N2 = N). The numerical prefactors are 
a convention that arose historically for reasons not worth explaining here. 
Crudely speaking, ~ measures the degree of "hardness" of a SAW in its 
interactions with other SAWs. A useful standard of comparison is the hard 
sphere of radius r and constant density: 

~ d / 2  

B2 = dl-'(d/2) (2r)a (2.18) 

d 
2 _ ~ (2.19) Rg-d- -~  r- 
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and hence 

_ 

h~d-~h,~, dF( d/2 ) 

( ~1.12838 in d = l  

= ~ 4 / 3  in d = 2  

[ 2 1 . 6 1 8 5 9  in d = 3  
in d =  4 

(2.20) 

Inserting (2.1), (2.6), and (2.12) into (2.17), we see that  

~FN~ N 2~4-~'-d~ (2.21) 

as N ~ m.  We can therefore distinguish three a priori possibilities: 

(a) 2A4--y--dv>O, so that  ~ N ~  m as N ~  m. This behavior  can- 
not occur unless typical SAWs have a very strange (porcupine- 
like) shape, which is quite implausible. 16 

( b )  2 5 4 -  y - -  dv = 0. In the simplest case this means that  
~ ~ * > 0  as N ~  0% i.e., typical SAWs exclude each other 
"within a constant  factor like hard spheres." This behavior  is 
called hyperscaling. However ,  the relation 2A 4 - ) , -  dv = 0 is also 
consistent with a logari thmic violation of hyperscaling, i.e., 
~ N ~ ( l o g N ) - P ~ 0  as N--* m for some p o w e r p  >0 .  

(c) 2 5 4 - ~ -  dv < 0, so that  7rN ~ 0 as N-- ,  m. This is a power-law 
violation of hyperscaling; typical SAWs exclude each other 
infinitely more  weakly than hard spheres. 

A very beautiful heuristic a rgument  concerning hyperscaling for SAWs 
was given by des CloizeauxJ ~~ Note  first f rom (2.17) that  ~ measures,  
roughly speaking, the probabil i ty of  intersection of two independent SAWs 
that start a distance of order (Rg)l /2~NV apart.  Now,  by (2.6), we can 
interpret a long SAW as an object with "fractal dimension" 1/v. Two inde- 
pendent such objects will "generically" intersect if and only if the sum of 
their fractal dimensions is at least as large as the dimension of the ambient  
space. So we expect 7 ~* = l imN_ ~ ~N to be nonzero if and only if 

1 1 
- + - > ~ d ,  i.e., dv<~2 (2.22) 

~6 Modulo some reasonable assumptions, this behavior can in fact be rigorously excluded: see 
Theorem A,I and Eqs. (A.20)-(A.22) in Appendix A, 
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Since it is believed that 

I ) =  

1 

1 
x log 1/8 

1 e 15e 2 

 +ig+ 5-i2+ - 
0.588 

3 

we see that  

for d > 4  

for d = 4  tTI) 

for d = 4 - e  t71) 

for d =  3 (107-109"92"93'110) 

for d = 2  ~lll'112) 

dv < 2 

dv = "2 + logs" 

dv> 2 

for d < 4  

for d = 4  

for d >  4 

(2.23) 

(also this paper)  

B(ff,,n2) ~< �89 + 1)(N2 + 1 ) (2.25) 

or in terms of critical exponents,  

2 A 4 - y ~ < 2  (2.26) 

It  follows that  dv > 2 implies 2A 4 - ~ -  dv < 0, i.e., the power-law violation 
of hyperscaling. This is now proven rigorously to occur for d~> 5/L23'24) 

In the polymer  physics literature it is usually taken for granted that  
hyperscaling holds in dimension d =  3. But in our  opinion hyperscaling is 
a deep proper ty  that  needs to be tested. 

so that  

c:v.N2<~ (N 1 + 1)(N2 + 1)C,v~C,v2 (2.24) 

Therefore we expect: 

�9 hyperscaling for d < 4 

�9 logari thmic violation of hyperscaling for d = 4 

�9 power-law violation of hyperscaling for d > 4 

One half  of this heuristic argument  can be proven rigorously. It is easy 
to see ~1~3) that  
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We remark that dimension d =  2 is a different case: here hyperscaling 
can be proven rigorously (modulo some reasonable assumptions on the 
scaling of individual SAWs). We present this proof in Appendix A; it is the 
analog for SAWs of Aizenman's proof (ref. 49, Section 8) of hyperscaling 
for two-dimensional Ising models with finite-range ferromagnetic inter- 
action. The underlying geometric idea is that SAWs in the plane cannot 
avoid intersecting each other. 

Finally, we need to make some comments about corrections to scaling. 
Clearly, (2.1)/(2.2)/(2.6)/(2.12) are only the leading term in a large-N 
asymptotic expansion. According to renormalization-group theory, ~14) the 
mean value of any global observable (9 behaves as N--* oo as 

al a2 bo bl b2 
( (9)N=AN p 1 + ~ + ~ 5 + - - .  + ~ + ~ - - i + ~ - g S +  ... 

Co C1 C2 ] 
+ ~ + ~-Z-~ + ~--h-7-g5 + ... (2.27) 

Thus, in addition to "analytic" corrections to scaling of the form akiN k, 
there are "nonanalytic" corrections to scaling of the form bk/N a'+k, 
Ck/N a2+k, and so forth, as well as more complicated terms [not shown in 
(2.27)] which have the general form const/N k'4j+k2a2+ ' +l, where k~, 
k2 ..... and l are nonnegative integers. The leading exponent p and the 
correction-to-scaling exponents '4~< .41 < ... are universal; p of course 
depends on the observable in question, but the .4; do not. [Note that the 
exponents .41 < .42 < "" have no relation whatsoever to the gap exponent 
,44 defined in (2.12). The notation used here is standard but unfortunate.] 
The various amplitudes (both leading and subleading) are all nonuniversal. 
However, ratios of the corresponding amplitudes A, bo and Co (but not ak 
or the higher bk, Ck) for different observables are universal/9~ 

Remark .  The names of the critical exponents ?, 0qing, v, and .44 are 
chosen by analogy with the corresponding exponents in ferromagnetic spin 
systems. (17'~5) Indeed, the generating functions of self-avoiding walks, 

X(fl)- ~ flNCN (2.28) 
N~O 

G(x; fl) = ~. flNcu(x) (2.29) 
N=O 

/~4(fl) ~ --3 ~a flNl +N2CNI,N2 (2.30) 
NI, N2 = 0 
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are equal to the susceptibility, spin-spin correlation funcion, and fourth 
cumulant in the n-vector model analytically continued to n = 0 .  tt'4-7) In 
particular, if x is a nearest neighbor of the origin, then G(x; fl) is essentially 
the energy E (up to an additive and multiplicative constant). The quantity 

~ .  o ,  rex I x l  2 G(x; fl)~'/2 
t P ) - ~  ~.~a(x----~)-) (2.31) 

is the second-moment correlation length. Inserting (2.1)/(2.2)/(2.6)/(2.12) 
into (2.28)-(2.31), we obtain the leading behavior 

X(fl) ~ ( t i c -  f l ) -r  (2.32) 

G( x; fl) ~ (tic - f l ) l  -,~,s + regular terms (2.33) 

~(fl) ~ (tic - fl) -"  (2.34) 

~4(fl) ~ (tic - fl) -~'- 2,~4 (2.35) 

as fl approaches the critical point tic = 1//~. Note, in particular, that 0q~ng 
is the exponent for the singular part of the specific heat C n ~  OE/Ofl; the 
exponent for the full specific heat is 0c=max(0qing, 0). If the hyperscaling 
relation dv = 2/I 4 - ), holds (without multiplicative logarithmic corrections), 
then the renormalized coupling constant g = -u4/X2~ d tends to a nonzero 
limiting value g* as fl ~ tic; so hyperscaling (without multiplicative 
logarithmic corrections) can be interpreted as the non-Gaussianness (non- 
triviality) of the scaling-limit quantum field theory (ref. 7, p. 281). 

2.3. The Pivot Algorithm: A Review 

The pivot algorithm was invented in 1969 by Lal, (8) reinvented in 1985 
by MacDonald et al.) 9) and again reinvented a short time later by 
Madras. (~~ The pivot algorithm is the most efficient algorithm currently 
known for simulating SAWs in the fixed-N, variable-x ensemble. Here we 
summarize briefly the relevant features of the algorithm; more details can 
be found in refs. 10 and 83. 

The elementary move of the pivot algorithm is as follows: Choose at 
random a pivot point k along the walk (0 ~< k ~< N - 1 ) ;  choose at random 
an element g of the symmetry group of the lattice (rotation or reflection or 
a combination thereof); then apply g to the part of the walk subsequent to 
the pivot point (namely cok+ 1 ..... coN), using o9 k as the temporary "origin." 
That is, the proposed new walk co' is 

, fogi for O<~i<~k 
c~ ~cok+g(wi--Cok) for k + l < ~ i < ~ N  

(2.36) 
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The walk 09' is accepted if it is self-avoiding; otherwise, it is rejected, and 
the old walk 09 is counted once more in the sample. It is easy to see that 
this algorithm satisfies detailed balance for the standard equal-weight SAW 
distribution. Ergodicity is less obvious, but it can be proven, (1~ H6) 

At first thought this seems to be a terrible algorithm: for N large, 
nearly all the proposed moves will get rejected. In fact, this latter statement 
is true, but the hasty conclusion drawn from it is radically false! The accep- 
tance fraction f does indeed go to zero as N ~  0% roughly like N - P ;  
empirically, it is found that the exponentp is ,~0.19 in d = 2  (1~ and ~0.11 
in d = 3 .  (1~ But this means that roughly once every N p moves one 
gets an acceptance. And the pivot moves are very radical: one might 
surmise that after very few accepted moves (say, five or ten) the SAW will 
have reached an "essentially new" configuration. One conjectures, there- 
fore, that the autocorrelation time ~ of the pivot algorithm behaves as 
~N p. Things are in fact somewhat more subtle (see the next paragraph), 
but roughly speaking (and modulo a possible logarithm) this conjecture 
appears to be true. On the other hand, a careful analysis of the computa- 
tional complexity of the pivot algorithm (see also below) shows that one 
accepted move can be produced in a computer time of order N. Combining 
these two facts, we conclude that one "effectively independent" sample can 
be produced in a computer time of order N (or perhaps Nlog  N). 

Let us look more closely: Suppose we know that the acceptance 
fraction f in the pivot algorithm behaves as f ~  N -p  as N ~  oo. Then, 
as argued above, after a few successful pivots--i.e., a time of order 
1 / f~  NP-- the  global conformation of the walk should have reached an 
"essentially new" state. Thus, we expect that for observables A which 

2 R~- - the  measure the global properties of the walk--such as R~, Rg, or 
autocorrelation time ri,t,A [see (C.4)] should be a few times 1If This 
is confirmed numerically (ref. 10, Section4.3). On the other hand, it is 
important to recognize that local observables--such as the angle between 
the 17th and 18th steps of the wa lk - -may  evolve a factor of N more slowly 
than global observables. For example, the observable mentioned in the 
preceding sentence changes only when o917 serves as a successful pivot 
point; and this happens, on average, only once every N/f attempted moves. 
Thus, for local observables A we expect rin,,A to be of order N/f General 
properties of reversible Markov chains (79) then imply that the exponential 
autocorrelation time rexp must be of at least this order; and if we have not 
overlooked any slow modes in the system, then r,xp should be of exactly 
this order. Finally, even the global observables are unlikely to be precisely 
orthogonal to the slowest mode; so it is reasonable to expect that ~xp.A be 
of order N/f for these observables, too. In other words, for global observ- 
ables A we expect the autocorrelation function pAA(t) to have an extremely 

822/80/3~-12 
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slowly decaying tail which, however, contributes little to the area under the 
curve. This behavior is illustrated by the exact solution of the pivot 
dynamics for the case of ordinary random walk (ref. 10, Section 3.3), and 
by numerical calculations for the SAW (see Appendix C). 

Computational Complexity. A very important issue in any algo- 
r i t h m - b u t  especially in a nonlocal one--is the CPU time per iteration. By 
using a hash table, t119'12~ one can check the self-avoidance of a proposed 
new walk in a time of order N. But one can do even better: by starting the 
checking at the pivot point and working outward, failures can be detected 
in a mean time of order N 1-p (ref. 10, Sections 3.4 and 4.4). The mean 
CPU time per successful pivot is therefore -.~N ~-p for each of ,~N p 
failures, plus ~ N for one success, or ~ N in all. Combining this with the 
observations made previously, we conclude that one "effectively inde- 
pendent" sample--as regards global observables--can be produced in a 
computer time of order N. 

Initialization. There are two main approaches: 

1. Equilibrium start. Generate the initial configuration by dimeriza- 
tionC12~'l'83); then the Markov chain is in equilibrium from the beginning, 
and no data need be discarded. This approach is feasible (and recom- 
mended) at least up to N of order a few thousand. There is no harm in 
spending even days of CPU time on this step, provided that this time is 
small compared to the rest of the run; after all, the algorithm need only be 
initialized once. 

2. "Thermalization". Start in an arbitrary initial configuration, and 
then discard the first ndisc >> ~exp ~ N / f  iterations. This is painful, because 
ze~p is a factor ~ N  larger than zint, A for global observables A; thus, for 
very large N ( > 105), the CPU time of the algorithm could end up being 
dominated by the thermalization. Nevertheless, one must resist the tempta- 
tion to cut comers here, as even a small initialization bias can lead to 
systematically erroneous results, especially if the statistical error is small: 
see Appendix B for striking evidence of this. Some modest gain can 
probably be obtained by using closer-to-equilibrium initial configurations 
(e.g., ref. 122), but it is still prudent to take ndisc at least several times N/f. 

Initialization will become a more important issue in the future, as 
faster computers permit simulations at ever-larger chain lengths. 

3. A L G O R I T H M S  FOR C O U N T I N G  O V E R L A P S  

In this section we discuss algorithms for computing the excluded 
volume between a given pair of SAWs; this is the key step in a 
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Monte Carlo study of the second virial coefficient. This section can be 
skipped by readers whose main interest is in the results rather than the 
algorithms. 

3.1. Generalit ies 

Let co(l) and 60 (2) be, respectively, Nrstep and N2-step SAWs, and 
define T(co cl), co ~2)) to be the number of translates of cot2) which somewhere 
intersect co t 1): 

T(CO(I),CO(2))= # { X ~ . 7 / d ;  CO(1) ~(CO(2)-F X)=fi (,~} (3.1a) 

= # (cot1)_ cor (3.1b) 

where A - - B = { y - - z ' y ~ A , z ~ B } .  The expected value of T(cot~),cot2)), 
averaging over independent walks cot1) E SeN, and cot2) ~ 5aN2 ' is CN, N2/CN~, CN2. 
This quantity has the asymptotic behavior 

C N,,NJC N, , C N2 "~ (N 1N2) ~2~4- Y)/2g( N 1 IN2) (3.2) 

where g is a scaling function [cf. (2.1)/(2.12)]. It is thus possible to 
estimate the critical exponent 2 A 4 - y  by running two independent pivot 
algorithms and measuring T(co tl), co~2)). (Typically one would run at N~ = 
N 2 = N  for a sequence of values of N.) In particular, this allows a direct 
Monte Carlo test of the hyperscaling relation dv = 2A4--y. Note that an 
independent measurement of y is not needed. 

The efficient determination of T(A 1, A2) = # (A l - A2) for a specified 
pair of sets Aa, A2 c Z a is a very interesting and nontrivial problem in 
computer science. We see two broad approaches: 

1. Deterministic algorithms which compute T(A, ,  A2) exactly. 

2. Monte Carlo algorithms which produce an unbiased (or almost 
unbiased) estimate of T(A1, A2). 

In the latter case, the statistical fluctuations in the auxiliary (inner-loop) 
Monte Carlo process would be added to those in the main Monte Carlo 
program; but this is acceptable provided that the former are not too large 
compared to the latter (see Section 3.4). 

We shall discuss the deterministic algorithms for computing T(AI,  A2) 
in Section 3.3 and the Monte Carlo algorithms in Sections 3.4-3.9. 

3.2. Notat ion 

We shall denote by ~ (resp. Jlr2) the number of points in the set A~ 
(resp. A2). We also write X~i.=min(Jf~l, ~ )  and JC'max=max(A/], Jlr2). 
An N-step self-avoiding walk has X =  N + 1 points. 
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Now fix a pair of sets At, A2 cT/a, and write 

S = - A t - A 2  = { y - z  : y ~ A l , z e A 2 }  (3.3) 

Our goal is to compute T(A~, A2)= # (S). An important role is played by 
the function 

p(x) = # {(y, z) :yeA1,  zeA2,  y - z = x }  (3.4a) 

= (XAt * )?a2)(x) (3.4b) 

where ;(at and Za2 are the indicator functions of the sets At and A2, respec- 
tively, and )~A,(z)=XA2(-z), and �9 denotes convolution. Clearly 

p(x) = 0 for x r S (3.5a) 

1 ~<p(x) ~<,A:min for x E S  (3.5b) 

We also write 

i(x)={10 if p (x)>O} {1 if x s S }  
if p(x)=O = 0 if x r  (3.6) 

Note that 

~ x ) =  ~ 1 = T(AI,A2) 
x E Z  a x e S  

2 p(x)= ~" p (x l=AqX2  
x G Z  a x ~ S  

For future re~rence we define also 

(3.7) 

(3.8) 

1 
U(AI ,A2) -  Y'. (3.9) 

~ s p ( X )  

This observable has little intrinsic interest, but it will play an important 
role in two of the Monte Carlo algorithms. It is not hard to see that t7 

+ ~2 - 1 <~ T(A1, A2) <~ ,A/ll,/~2 (3.10) 
2 

T(At'A2) <~ U(AI ,A2)~T(A1,A2)  (3.11) 

17 The two upper bounds are trivial. The lower bound in (3.11 ) is the Schwarz inequality. The 
lower bound in (3.10) is proven as follows: Let y ,  (resp. z , )  be the lexicographically 
smallest element of A t (resp. A2). Then . v , - A  2 <~ y , - z ,  ~ A t  - z , ;  so y , - - A  2 and 
A i - z  * are subsets of S (of cardinalities ./Y2 and Aq, respectively) with only one point in 
common (namely, y ,  - z , ) .  Q.E.D. 
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Moreover, we shall prove in Appendix A (Theorem A.3) that 

U(Aa, A2) >/log(A~ Jff2) (3.12) 

We shall use ( . )  to denote expectation with respect to some proba- 
bility distribution on pairs of sets A~, A 2 (e.g., the equal-weight ensemble 
on the space ~N, x 5aN2 of pairs of SAWs). We shall use E( . )  to denote 
expectation with respect to some "inner-loop" Monte Carlo algorithm. 

3.3.  D e t e r m i n i s t i c  A l g o r i t h m s  

Here we introduce some deterministic algorithms for computing p(x), 
I(x), T(AI,A2), and/or U(A1,A2). These algorithms can be employed 
either "stand-alone" or as building blocks for the Monte Carlo algorithms 
to be introduced later. 

1. Suppose first that we want to compute p(x) for a single value ofx.  
This can be done as follows: write all the points of A~ into a hash 
table~Z~ then examine sequentially each of the points z E A2, inquiring 
whether y -  x + z belongs to A~, and incrementing a counter if it does. 
Clearly this requires a CPU time of order ~ + ~ .  

For computing I(x), the algorithm can be streamlined by stopping as 
soon as one finds p(x)> O. 

2. Suppose next that we want to compute p(x) for several different 
values of x, say r of them. Then the foregoing algorithm requires a CPU 
time of order ~ + rArE. But since the answer is invariant under the inter- 
change A~ ~-'>A2, x-"~ --X, it now pays to choose A 2 to be the smaller of 
the two sets. As a result, the CPU time is of order J~m~x + rJr 

3. Suppose, finally, that we want to compute p(x) or I(x) for all x. 
[A special case of this is to compute T(At, A2) or U(A~, A2).] This can be 
done by examining sequentially each of the pairs y ~ A ~, z e A 2, and writing 
the points x - y - z  into a hash table equipped with an auxiliary count 
field. Clearly this requires a CPU time of order ~ ~ .  [The CPU time for 
subsequently utilizing the counts {p(x)} is of order T(AI, A2)~<A/~I~.] 
If all one wants is {I(x)}, then the count field can be dispensed with; it 
suffices to know which sites x are hit at least once. 

4. An alternative algorithm for computing p(x) for all x can be based 
on the fast Fourier transform (FFT). Let 0~j (1 <~j<~d) be the extension of 
A~ in the j t h  coordinate direction (i.e., the difference between the maximum 
and minimum values of yj for y ~ A~). Let flj be the corresponding exten- 
sion for A 2. Now let k s. be the least integer such t h a t  2kJ>~Otjq-flj-b 1. Then 
if we place A 1 and A 2 in a periodic box B of size 2 k l •  2 k 2 x  - - .  • 2 ka, we 
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can compute the convolution of ZA, and XA2 in the box B, without distor- 
tion by the periodic boundary conditions; this gives the full set of counts 
{p(x)} [and thus also {I(x)}, T(A~, Az), and U(A], A2)]. The convolu- 
tion can be carried out by the FFT in a time ~ V log V, where 

d 
v=2k ,+  ...+ka< M 2(~j+flj) (3.13) 

j = l  

Let us now estimate the performance of these methods as "stand-alone" 
algorithms for computing T(co t~), 09(~)), where co (~) and co (2) are self-avoiding 
walks. Algorithm # 3  computes T(09"),09 (2)) in a CPU time of order 
A~ W2 = (N~ + 1 )(N2 + 1 ), i.e., of order N 2 if N~ ~ N2 ~ N. By contrast, we 
expect that one "effectively independent" sample of the pair (co ~), co c2)) 
can be produced by the pivot algorithm in a CPU time of order N1 + N2 
(if Z'int. T ~ N p) or  in any case not much greater. So this algorithm would 
spend more time analyzing the data than producing i t !--and the overall 
computational complexity per "effectively independent" sample would 
be increased from N to N 2, thereby nullifying the advantage of the pivot 
algorithm over previous t123' 124) algorithms. 

Algorithm # 4  computes T(co t~, co t2)) in a CPU time of order Vlog V, 
where V is given by (3.13). For "typical" SAWs we have V ~ ( N  I +Na) dr, 
so presumably we have 

( Vlog V) ~ (N~ + N2) d" log(N, + N2) (3.14) 

In the usual situation NI ~ N2 ~ N, this method is asymptotically better 
than algorithm # 3  if dv < 2, i.e., if d < 4 .  However, it is unlikely to be 
better in practice except for very large N. And the behavior is still vastly 
worse than the time of order N for generating the walks (except in d = 1). 

It may be possible to devise deterministic algorithms which are more 
efficient than either of these elementary ones; we leave this as an exercise 
for interested computer scientists. 

3.4. Monte Carlo Algorithms: Generalities 

Fix a pair of sets A~, A 2, and suppose that we use some Monte Carlo 
algorithm to provide an unbiased estimate Z of T(A~, A2). We will thus 
have 

E(Z [ A i ,  A2) = T(AI, A2) (3.15a) 

v a r ( Z I A 1 , A 2 ) = E ( Z 2 I A 1 , A E ) - E ( Z I A I , A 2 ) 2 = V ( A I , A 2 )  (3.15b) 
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Here (3.15a) expresses the unbiasedness of the inner-loop Monte Carlo 
algorithm, while (3.15b) defines its (conditional) variance. We shall com- 
pute the functional V(A~, A2) for each of the Monte Carlo algorithms we 
introduce (Sections 3.5-3.7). 

Now let us call the Monte Carlo subroutine R times for the given pair 
(A i, A2) and average the results: Z =  R - t  ~-~.n= 1 Z i. Obviously we have 

E(Z[  A1, A2) = T(A1, A2) (3.16a) 

var(Z [ Ai, A2) = R  -I  V(A1, A2) (3.16b) 

Now suppose that we generate a random pair (A~,A2) from some 
probability distribution [e.g., SAWs (co (t), co ~2~) from the equal-weight dis- 
tribution on 5"N, x ~n2]. Clearly Z is an unbiased estimator of ( T ) ,  i.e., 

<Z> = <E(ZI  A, ,A2)> = < r >  (3.17) 

where <. > denotes expectation in the given probability distribution. The 
variance of 2 is a sum of two terms: 

var(Z) = var(T) + <var(Z I A,, A2)> 

= [ < T 2 > - - < T >  2] + R - ' <  V> (3.18) 

The first term is the fluctuation of T(A~, A2) from one pair of sets to 
another; the second term is the mean over pairs of sets of the fluctuation 
(conditional variance) in the inner Monte Carlo subroutine. 

The mean CPU time for the computation of Z is < Tcp U ) = a + bR: 
here a is the mean CPU time for generating a pair of "effectively inde- 
pendent" sets (A l, A2) from the desired ensemble, plus any "setup" time 
associated with the inner-loop Monte Carlo algorithm; while b is the mean 
additional CPU time per iteration of the inner-loop Monte Carlo algo- 
rithm. The goal is to minimize the variance-time product 

( Top u > var(Z) = b var(T) R + a< V) R - 1 + a var(T) + b( V> (3.19) 

since this quantity divided by the total CPU time equals the variance of 
our final estimate. Hence the optimal choice of R is 

Rop t \ ~ j  (3.20) 

and the variance-time product is then 

[(Tcpu) var(Z)]opt=[(avar(T))l/2+(b(V))U2] 2 (3.21) 
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Of course, R must be a positive integer, and so the true Rop t is obtained 
by rounding the right-hand side of (3.20) up or down. This subtlety can be 
ignored if Rop t is large, but may be significant otherwise. In particular, the 
deterministic inner-loop algorithms (Section 3.3) have V=0,  but in this 
case Ropt= 1 [rather than 0 as (3.20) claims] and [ ( T c p u ) v a r ( Z ) ] o p t =  
(a + b) var(T). 

In the remainder of this section we will assume that the CPU time for 
generating the sets A~ and A2 is of order JVll + o~2. Clearly this is a lower 
bound, since it takes a time of order ~ + JV2 simply to write down the two 
sets. On the other hand, for our application to SAWs, A t and A2 will be 
generated by the pivot algorithm, which generates an "effectively inde- 
pendent" SAW (as regards global observables) in a CPU time of order N (see 
Section 2.2). We expect that the observable T(o9c i ~, o9c2)) is indeed "global" in 
the sense that tint. r ~ NP, where p is the acceptance-fraction exponent. 

3.5. " H i t - o r - M i s s "  Monte  Carlo Algor i thm 

Let ~ f  (resp. ccf) be the maximum (resp. minimum) value of t h e j t h  
coordinate among the points in At, so that 

B1 = [~ti-,ct~- ] x -.- x [eta,  ct~" ] (3.22) 

is the smallest rectangular parallelepiped containing At. Let flf  and f l f  be 
the corresponding values for A2, and B2 the corresponding box. It follows 
that 

B - B ~ - - B 2 - [ c t T - f l ~ - , ~ - - f l i - ] x  ... x[ct  a - f l ~ , c t ~ - - f l a ]  (3.23) 

is a parallelepiped which is guaranteed to contain all the points of 
S - A 1  --A2.18 

Therefore, T(At,A2) = #(S)=Y.x~aI(x) can be computed by the 
trivial "hit-or-miss" Monte Carlo method: Pick a point x e B at random, 
and compute I(x) by the deterministic algorithm # 1 of Section 3.3; then 
output Z= #(B) I(x), where #(B)=I-Ia=l(o~j+flj+l). (Here ~j= 
%+ - ~ 7  and flj=fl+ - f i r . )  Clearly I(x) is a binomial random variable of 
mean p = #(S)/#(B), so that 

#(s) 
E(I(x)) = (3.24) 

#(B) 

va #(S) ( I  #(S)~ (3.25) r(X(x)) =#--~ - ~ /  

18 In fact it is the smallest such parallelepiped, since for each indexj there is a point in An -.42 
with jth coordinate equi/l to ~/--fiT, and another point with jth coordinate equal to 
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Hence Z =  # (B)I(x)  is an unbiased estimator of # (S), and its variance is 

Vhit . . . . .  iss(A 1 , A2) - var(Z) = # ( S ) [  # ( B )  - # ( S ) ]  (3.26) 

The CPU time for R iterations of this algorithm is of order Tcp u = 
Xmax + RJV'r~.: we put the larger of the two sets A~, A2 in the hash table 
once, and then each time we compute p(x) by looping over the smaller of 
the two sets. The CPU time for generating the two sets is by assumption 
also of order Jt~a x. Therefore, in (3.19)-(3.21) we have a~JV'ma x and 

3.6. Barrett Algorithm: Theory 

Barrett has proposed the following Monte Carlo algorithm, which 
gives an unbiased estimate of T(A~, A2) (A. J. Barrett and B. G. Nickel, 
private communication; a precursor of this algorithm can be found in 
ref. 125): 

I. Choose at r andomy~A~ a n d z ~ A 2 .  S e t x = y - z .  

2. Compute p(x) using the deterministic algorithm # 1 described in 
Section 3.3. [Note that by construction we have x~  S and hence 
p ( x )  > O. ] 

3. Output Y= ~ Jt~/p(x). 

The analysis of this algorithm is easy: In step 1 we choose the vector x with 
probability 

Prob(x) = p(x) (3.27) 

It follows that 

E(Y) = ~ Prob(x) Y(x) = y" 1 = T(A1, Az) (3.28a) 
x e S  x ~ S  

E(Y2)=  ~ Prob(x) Y(x)2= ~ =Jt~JVzU(A,,A2) (3.28b) 
x~S x ~ s  p ( x )  

and hence 

V8 .... t t(A1,A2)--var(Y)=,A/ll , /VzU(AI,A2)- T(AI,A2) 2 (3.29) 

The CPU time for R iterations of the Barrett algorithm is of order 
Tcpu ~ JVmax + R~4rmin : we put the larger of the two sets A~, Az in the hash 
table once, and then each time we compute p(x) by looping over the 
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smaller of  the two sets. The C P U  time for generating the two sets is by 
assumption also of order Xmax- Therefore, in (3.19)-(3.21) we have 
a ~ '  "/~max and b ~ Xmi,. 

3.7. Karp-Luby Algorithm: Theory 

Karp  and Luby 026"127) have devised an elegant Monte  Carlo algorithm 
for estimating T(A~,A2) (and somewhat  more general combinatorial  
problems). The K a r p - L u b y  algorithm goes as follows: 

1. Choose at random y E A ~ and z e A2. Set x = y -- z. Set t = 1. 

2. Choose at random y '  e A~. 

3. If  z' - y '  - x ~ A 2, then go to step 4. Otherwise, increment t by 1 
and go to step 2. 

4. Output  Z = Ji l t .  

This algorithm can be understood as a randomized version of  the Barrett 
algorithm. Step 1 is identical in the two algorithms, and it selects the vector 
x with probability 

p(x) 
Prob(x)  = (3.30) 

Then t (the number  of  trials of steps 2 and 3 needed to find a y '  such that 
y ' - x e A 2 )  is, conditioned on x, a r andom variable with a geometric 
distribution: 

P r o b (  t = k l x ) =p(x)(1 - P ( X ) ' ~  k -  for k =  1,2, 3 .... (3.31) 

Hence the conditional expectations of  Z = ~ z t  are 

E(Zlx)  = ~ (3.32a) 
p(x) 

e ( z  2 i x)=Jtq~4r~z( ' 2 ~  _ ) 
p(x----~ \p(x) 1 (3.32b) 

(Of course, this makes sense only for xeS.)  Thus, s t eps2-4  of  the 
K a r p - L u b y  algorithm produce a random quantity Z whose mean value 
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(conditional on x) is precisely the deterministic quantity Y= ~ A/'2/p(x) of 
the Barrett algorithm. It follows that the unconditional expectations are 

E(Z) = ~ Prob(x) E(Z [ x) = T(A~, Au) (3.33a) 
. ' , ;ES 

E(Z2) = x~S ~ Pr~ E(Z2 l x)=A/'z x~s ~" \p(x)~ 2A/]~ _ 1) 

= 2.A~ Jff 2 U(A~, A2) --~2T(A~, Az) (3.33b) 

and hence 

VKarp-Luby(A 1, A2) = var(Z) = 2A~1 ~2 U(A1, A2) 

--.Ar2T(AI,A2)- T(AI,A2) x (3.34) 

For future reference, we note the following inequality: 

ASl--1 
.Arz U( A l, A2) <~ VKarlr-Luby(A 1 ,  A2) <<. 2.A~ ~z U( A t, Az) .Aq + ~ - 1  

(3.35) 

[The upper bound is trivial. To prove the lower bound, use (3.10) and 
(3.11) to deduce (A/~+~2-1)T<<.T2<~A/~Ar2U]. This means that 
VKarp_L,by is of the same order of magnitude as its first term, namely 
~ A ~ U ,  except perhaps when ~ ' ~ 2 .  An alternative (and often 
sharper) lower bound on VKarp-L,by can be obtained by noting that 

/ A/" \ - -  1 / 2  

A~ T~</~22 log A~ax) ~UI ~Uz U (3.36) 

[From (3.11) we have T 2 / A ~ 2  <~ U, while from (3.12) we have log ~V'm~ , 
~< U. NOW take the geometric mean of these two bounds. ] Therefore we 
have 

[ VKarp_Luby(A i, m2) ~ 2 -- log J~'max ~11 .A~ U(AI, A2) 

- T(AI, A2) 2 (3.37) 

The CPU time for one execution of steps 2 and 3 is essentially t, so the 
expected CPU time for one iteration of the Karp-Luby algorithm is E(t) = 
T(A~, A z ) / ~  2. In addition, there is an intial CPU time of order X2 to place 
the elements of A2 in a hash table. Finally, we should remember the time 
of order ~ + A/~ for generating A ~ and A 2 in the first place. The expected 
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CPU time for R iterations of the Karp-Luby algorithm (plus generating A~ 
and A2) is thus 

T(A1, A 2) R 
Tceu  " - "  "fl/'max -[ (3.38) 

A~ 

Therefore, in (3.19)-(3.21) we have a ~ .Arm,x and b ~ ( T ) / A @  

3.8. Scaling Theory 

In this section we consider the scaling theory of the three Monte Carlo 
algorithms--hit-or-miss, Barrett, and Karp-Luby-- in  the case where A1 
and A2 are independent random SAWs of lengths N1 and N2, respectively, 
and N~ ~ N2 ~ N ~  or. In each case we need to compute (or guess heuristi- 
cally) the scaling behavior ofvar (Z)  and ( T c e v )  as N ~  or. A good figure 
of (de)merit for an algorithm is the mean CPU time needed to estimate 
( T )  with a relative variance of order 1; this time is 

[ ( T c e u )  v a r ( Z ) ] o p t  (3.39) 
( T )  2 

For the hit-or-miss algorithm, we must study the scaling of ( T ) ,  ( T 2 ) ,  
and ( T # ( B ) ) .  For the Barrett and Karp-Luby algorithms, we must 
study the scaling of ( T ) ,  ( T 2 ) ,  and ( U )  as well as their various com- 
binations. 

As discussed in Section 2.2, we expect that ( T )  scales as 

( T )  ~ N pr (3.40) 

where 

P r  = 2z14 - Y (3.41) 

We further expect that the probability distribution of T will, after rescaling 
by N pr, approach a nontrivial limiting distribution (here "nontrivial" 
means that the distribution is not a delta function). Therefore, we expect 
that 

( T 2 ) ,  var(T) ~ N 2pr 

On the other hand, it is reasonable to expect that 

( U )  ~ NPu 

(3.42) 

(3.43) 



Monte Carlo Study of 2D and 3D SAWs 687 

for some (a priori unknown) exponent Pv. From (3.11) we know that 
2p T--  2 ~< p v~< P r;  and we will be interested in knowing whether these 
inequalities are strict or not. 

We now look at the individual algorithms. 

H i t - o r - M i s s  A l g o r i t h m .  As just discussed, we expect 

( T )  ~ N pr (3.44) 

var(T) ~ N 2pr (3.45) 

with p r  = 2 A 4 - - ) ~ .  On the other hand, for "typical" pairs of SAWs we 
clearly have # (B )~  Nay, so we expect 

( T # ( B ) )  ~ N  a'+pr (3.36) 

In general we have dv>~pT; but even when d v = p r  (i.e., hyperscaling 
holds), it seems intuitively clear that the ratio ( T 2 ) / (  T # ( B ) )  will stay 
well below 1 (except in dimension d =  1 ). Therefore, radical cancellations in 
(3.26) are excluded, and we expect 

( Vhit . . . . .  iss) ~ NaV+pr (3.47) 

It follows from (3.45) and (3.47) that 

var(Z) ~ N2PT+ R-INdV+PT (3.48) 

On the other hand, the CPU time is obviously 

( T c P u )  ~ N + R N  (3.49) 

The variance-time product is thus 

( T c e u )  var(Z) ~ N [ N 2 P r R  + Na '+PrR -1 + N 2pr + N a~+pr] (3.50) 

There are two cases: 

(a) If the hyperscaling relation d v = p r  holds, then Ropt~ 1. (We 
expect that this is the case for d <  4.) With this choice of R, we have 
var(Z) ~ ( T ) 2  and ( T c P u )  ~ N. In other words, we can achieve a relative 
variance of order 1 in a CPU time of order N. 

(b) If dv > PT, then Rop t ~ N (dv-pr)/2. ( W e  expect that this is the case 
for d > 4 .  More precisely, for d > 4  we expect that v=  1/2 and p r = 2 ,  in 
which c a s e  Ropt~Ntd-4) /4 . )  With this choice of R, we have v a r (Z )~  
( T )  3/2 Nay~2 and ( T c e u )  ~ N 1 + d~/2( T )  - 1/2, which implies a variance- 
time product of order N 1 +dr (T) .  (In fact, a variance-time product of this 
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order can be achieved with any R in the range 1 < R ~ N a"-pr; the optimal 
value Rop t lies at the geometric mean of these two extremes.) Hence a 
relative variance of order 1 requires a CPU time of order N l+a~-pr (i.e., 
order N I +(d-4)/2 for d>2) .  

Barrett and Karp-kuby Algorithms. The behavior of the 
Barrett and Karp-Luby algorithms is determined by the scaling behavior 
of ( T ) ,  ( T 2 ) ,  and ( U )  as N ~  ~ .  From (3.29) and (3.35)-(3.37), we 
have 

( VKarp-Luby ) ~'~ Jl:l ~ 2 ( U )  [ 2 

] (3.51) 

( T 2 )  ] 
u> ] (3.52) 

(We write a,.~b to denote that a/b--, 1 as N---, oo.) This focuses attention 
on the ratio 

2 
T ~)NI,N 2 

K(N1, N2) = (3.53) 
(N1 + 1)(N2 + 1)( U)NI,N2 

[which by (3.11) satisfies 0 ~x(N~, N2)~< 1 ] and in particular on 

~c= lira x(N, N) (3.54) 
N~oo 

(For simplicity we consider here only N~ = N 2 = N, but the same principles 
obviously apply at any fixed ratio NI/N2r ~.)  There are then three 
possible cases: 

(a) x = 0 .  In this c a s e  (VBarrett>~NZ(U> and <VKar.p_Luby>,~, 
2N2< U>. 

(b) 0 < K < I .  In this case <VBa.,tt > ~ ( 1 - K )  N2<U> and 
< V~a~L,by > ~ (2 --K) N2< U>. 

(c) x =  1. In this case ( V  B .... tt) "~N2(U), and its exact scaling is 
subtle. Of course we still have (VKaw-L,by)~ N 2 ( U ) .  

Case (a) corresponds to the exponent Pu being strictly strictly greater than 
2 p r - 2 ,  while cases (b) and (c) correspond to p v = 2 p r - 2 .  We believe 
that in fact case (c) never occurs: although it is possible to have 
U= T 2 / j I ~  for special pairs co cl), co ~2), e.g., perpendicular rods, it seems 
quite implausible that such behavior could occur (even in the limit N ~ ~ ) 
after averaging over all pairs of SAWs. 
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In Section 3.9 we shall present numerical data showing clearly that 
x < 1 in dimensions d = 2, 3; what  is less clear is whether x is zero or non- 
zero. For  dimension d > 4 we expect that  0 < tc < 1. [ For  d > 4 we expect 
that ( T ) , ~ N 2 , 1 9  from which it follows that ( U ) ~ N  2 and hence 
0 < x  ~< 1. 2o On the other hand, we believe, as noted above, that  x = 1 is 
impossible. ] 

Assuming that 0 ~< x < 1, it follows that (VBafrett) and (VKarv-L,by) 
are both of  order N 2 ( U ) .  Therefore, 

var(Z)  ~ ( T )  2 + R - 1 N 2 ( U )  (3.55) 

for both algorithms. On  the other hand, the C P U  times are 

( rcPu, Barrctt) ,'~ N +  NR 

( rcPU, Karp_Luby ) ~ N +  N - i ( T )  R 

(3.56a) 

(3.56b) 

The variance-t ime products  are thus 

( TcPu,Barret t ) var(Z) 

N[ ( T)ZR + N 2 ( U )  R -1 + ( T )  2 + N 2 ( U )  ] (3.57a) 

(TcPu.Kar~Luby) var(Z)  

~ N [ N - 2 ( T ) 3 R + N 2 ( U ) R - I + ( T ) 2 + ( U ) ( T ) ]  (3.57b) 

Recalling now the inequality T2~< ( N +  1)2U ['cf. (3.11)], we see that 
the dominant  term for the Barrett algori thm is the fourth one, provided 
that 1 <~R<N2(U)/(T)2; and in this case we have ( T c p u ) v a r ( Z ) ~  
N3(U). The optimal value is at the geometric mean of  this range, i.e., 
Rop,~ N( U) I/2/( T). We conclude that a relative variance of  order 1 
requires a C P U  time of  order N3( U)/(T)  2. This is at least of order N; 
but it may be larger, in case (U)~> (T2)/N 2 (i.e., in case pv>2pr-2). 

Recalling next the inequality U~< T I'cf. (3.11)], we see that the domi- 
nant term for the K a r p - L u b y  algorithm is the third one, provided that 
N2( U)/(T) 2 ~R ~N2/( T); and in this case we have ( T c P u )  var(Z) 
N(T)  2. The optimal value is at the geometric mean of  this range, i.e., 
Ropt ~ N 2 ( U )  1/2/( T)3/2. We conclude that a relative variance of  order 1 
requires a C P U  time of  order N. 

~9 This is rigorously proven for d~> 6, modulo the problem of translating generating-function 
results into fixed-N results. See ref. 1, Theorem 1.5.5, and Remark following it. 

2~ (U)>~(T2)/(N+I)2>~(T)2/(N+I)2 by (3.11) and the Schwarz inequality; 
while (U)  ~< (T)  by (3.11). Thus, if (T)  ~ N  2, we have also (U)  ~N 2. 
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Comparing the analyses of the Barrett and Karp-Luby  algorithms, we 
see that the effect of the additional randomization in the Karp -Luby  algo- 
rithm is to reduce drastically the mean CPU time per iteration ( T / ~  

versus Jl~an) while only modestly increasing the variance. The Karp-Luby  
algorithm is thus superior to the Barrett algorithm whenever ( T )  ~ N 2 (as 
we expect occurs in dimension d <  4); the two algorithms are of the same 
order whenever ( U )  ~ ( T )  ,~ N 2 (as we expect occurs in dimension d >  4). 

3.9 .  B a r r e t t  a n d  K a r p - L u b y  A l g o r i t h m s :  N u m e r i c a l  R e s u l t s  

In this section we report results of a rather crude Monte Carlo study 
of ( T ) ,  ( T : ) ,  var(T), ( U ) ,  (VBar~ett), and (Vrarp-Luby) for SAWs in 
dimensions d =  2 and d =  3 (taking N~ = N2 = N). The goal is to estimate 
the exponents P T  and Pu  (and the various amplitudes) in the scaling 
relations 

( T )  ~ A r N p r  

( T 2 )  ~ A T : N  2pr 

var(T) ,~ A ~< r) N :Vr 

( U )  ~ A t,N p" 

(VBarrett) ~ A v~,~o, N :+p" 

( WKarp_Luby ) ,~ A v~.n,_L.byN 2 +vv 

(3.58a) 

(3.58b) 

(3.58c) 

(3.58d) 

(3.58e) 

(3.58f) 

In Table I we report our Monte Carlo estimates for two-dimensional 
self-avoiding walks at N =  100, 200, 300, 400, 500. These were obtained by 
using the dimerization algorithm to generate pairs of independent SAWs 
co (~), co (2) and then using deterministic algorithm # 3 (Section 3.3) to com- 
pute T(co ~ ), co (2)) and U(o9 (~), co(2)). Unfortunately, some of the observables 

Table I. Quantities Relevant to the Barrett and Karp-Luby Algorithms, 
as a function of N I = N a = N ,  for 2D SAWs ~ 

N (T) ( T2)/104 var( T)/104 (U) ( VB . . . . .  )/104( VKarp-Luby )/104 

100 1373.53(0.48) 193.95 5.29 339.07 157.22 483.94(0.28) 
200 3854.69(1.39) 1529.10 43.23 723.10 1435.55 4236.24(2.58) 
300 7065.32(2.68) 5139.55 147.68 1124.57 5196.87 15025.26(9.79) 
400 10860.24(4.11) 12146.26 351.79 1535.59 12898.02 36803.23(24.10) 
500 15152.67(8.32) 23639.57 679.22 1950.72 26002.92 73527.83(70.29) 

Error bars are one standard deviation. 
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lack error bars (this is our fault). The fit to ( T )  gives a reasonable X 2 

provided that we discard the data point at the lowest value of N; we 
then get p r =  1.494___ 0.001. This is not far from the expected value p r =  
dv=3/2;  the small discrepancy can quite plausibly be attributed to 
corrections to scaling. (We will make a much more careful estimate of ( T )  
and its exponent P r  in Section 4.1.) The fits to ( T  2) and var(T) are also 
consistent with p r  = 3/2, although the lack of error bars prevents making 
this quantitative. The fit to (VKarp_Luby) gives a reasonable X 2 only if we 
discard the data points at the two lowest values of N; we then get 
p v =  1.110+0.002. If we use the same data points in the fits to ( U )  and 
(VB .... tt), we get p v =  1.078 and 1.152 (unfortunately without error bars). 
These estimates of p t, are thus in rather mediocre agreement; and it is far 
from clear whether p u is strictly greater than 2p r - 2  = 1. Another way of 
looking at this is to study the ratio x ~  = ( T 2 ) / ( N 2 ( U )  ), which decreases 
from ~0.572 at N =  100 to ,~0.485 at N =  500; it is far from clear whether 
this ratio is tending to zero or to a nonzero value as N---, oo. Clearly data 
at much larger values of N would be needed to resolve this question 
definitively. Unfortunately, such data are very time-consuming to obtain, 
because the deterministic algorithm # 3 for computing T and U takes a 
CPU time of order N 2. Regarding the reverse inequality, it seems clear that 
P v is strictly smaller than p r. 

In Table II we report our Monte Carlo estimates for three-dimensional 
self-avoiding walks at N =  100, 200, 500, 800, 1000. Here we used the pivot 
algorithm combined with deterministic algorithm # 3. For all observables, 
we can get a reasonable g 2 provided that we discard the data points at the 
two lowest values of N. The fits to ( T ) ,  ( T 2 ) ,  and var(T) yield 
p r  = 1.754 __+ 0.001. Again, the errors here are purely statistical; they do not 
take account of systematic errors arising from corrections to scaling. We 
will make a much more careful estimate of ( T )  and P r  in Section 4.2. The 
fits to ( U ) ,  ( VB .... t t) ,  and ( VKarp__Luby ) yield p v =  1.598 +0.001, 
1.699+0.001, and 1.630+0.001, respectively. Again, the agreement is 
mediocre; and it is far from clear whether P v  is strictly greater than 
2 p r - 2  ~ 1.51 (later we will see that 2 p r - 2  ~ 1.53 is a better estimate). 
Otherwise put, the ratio x N - ( T 2 ) / ( N 2 ( U ) )  decreases from ,~0.661 at 
N =  100 to ~0.528 at N =  1000; it is far from clear whether this ratio is 
tending to zero or to a nonzero value as N--,  oo. Again, data at much 
larger values of N would be useful. 

It is worth remarking that, in both the two-dimensional and three- 
dimensional cases, var(T) scales the same way as ( T 2 ) ,  but is only about 
3% (resp. 1.5 %) as big. This means that the probability distribution of T 
is very narrow. Otherwise put, while N-step SAWs vary radically among 
themselves in size and shape, the overlap T(co ~l~, co <2~) between two of them 
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is remarkably constant. Presumably this is because the operation of 
forming o9(1)-o9 ~2) "fills in the holes" in the individual walks: while co ~1~ 
and co ~2~ are fractals, o9(1)-o9 (2) is "semisolid" (roughly like Swiss cheese). 

4. NUMERICAL  RESULTS 

4.1. Two Dimensions 

2 2 In Table III we present our data for (R~)u, (Rg)N, (R, , )~,  
( T )  N.N, and the pivot-algorithm aceptance fraction f for SAWs in dimen- 
sion d = 2  in the range 100<~N~<80,000. Most of these SAWs were 
generated using the pivot algorithm, using either dimerization or straight 
rods for initialization (see Appendix B for a discussion of the adequacy of 
thermalization); run lengths were between 2 x 10 6 and 8 x 10 6 pivots subse- 
quent to thermalization. However, some data at N ~< 500 were generated by 
pure dimerization (between l0 s and 2 x 105 independent pairs of SAWs per 
run). The overlap T(co (1), co (2)) was in most cases estimated using the Kar- 
p-Luby algorithm (Section 3.7) with 100 ~< R ~< 200; however, some runs at 
N~<500 used deterministic algorithm # 3  (Section 3.3). Some subtleties 
concerning the correct determination of error bars on data generated by 
the pivot algorithm are discussed in Appendix C. 

Early versions of our program had a bug, in which SAWs were 
pivoted only at sites k > 0 (i.e., never at the starting point). This is harmless 
for single SAWs, thanks to the lattice symmetries; but for pairs of SAWs 
it means that the relative orientation of the initial steps of the two SAWs 
is never altered by the algorithm. This causes a slight bias in the estimates 
of ( T ) ,  especially for small N. However, we believe that this bias is com- 
pletely negligible (i.e., much less than our statistical errors) for the values 
of N treated here; we have been unable to detect any systematic difference 
between runs with and without this bug. Therefore, instead of throwing 
away the tainted data, we have simply indicated by a superscript "a" in 
Table III those values of N for which some (not necessarily all) of the data 
suffer from the bug. Caveat lector. 

Table IV shows the resulting values for the universal amplitude ratios 
Re) ,  and ~g. The error bars are here determined (RE>/(R~>, (R~)/( 

using the triangle inequality; they are probably overestimates by a factor of 
~ 3 .  

Log-log graphs of ( R  ~), (RE) ,  ( R ~ ) ,  ( T ) ,  and f versus N are so 
straight that there is nothing to be gained by reproducing them here. We 
fit each of these quantities to the Ansatz AN p . . . .  [where power = 2v for 
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Table IV. Universal Amplitude Ratios in Dimension d = 2  b 

100 0.14034• - -  0.66764• 

200 0.14013• - -  0.66514• 

300 0.14030• - -  0.66495• 

400 0.14028• - -  0.66402• 

500 0.14041• - -  0.66413• 

1 0 0 0  0.14005• 0.43920• 0.66367• 

1 5 0 0  0.14031• 0.43964• 0.66353• 

2000 0.14005 • 0.00053 0.43942 • 0.00162 0.66373 • 0.00225 

2500 0.14014• - -  0.66277• ~ 

3000 0.14006• 0.43941• 0.66262• 

3500 0.14015• - -  0.66281• 

4000 0.14036 • 0.00047 0.44023 • 0.00166 0.66285 • 0.00199" 

4500 0.14042• - -  0.66304• ~ 

5000 0.14030• 0.43948• 0.66247• ~ 

5500 0.14008• - -  0.66237• ~ 

6000 0.14031• 0.43974• 0.66335• ~ 

6500 0.14012• 0.43929• 0.66318• ~ 

7000 0.14044• 0.00080 - -  0.66293 • 0.00353 ~ 

7200 0.14026• 0.43934• 0.66260• 

7500 0.14061 • 0.00081 0.44002 • 0.00240 0.66245 • 0.00347 ~ 

8000 0.14027 • 0.43948 • 0.00143 0.66273 • 0.00197 ~ 

8250 0.14012• 0.43938• 0.66338• 

8400 0.14033• 0.43940• 0.66304• ~ 

8650 0.14017• 0.43929• 0.66297• 

9000 0.14025• 0.43951• 0.66285• ~ 

9200 0.14026• 0.43969• 0.66358• 

9500 0.14032 • 0.00090 0.43983 • 0.00266 0.66409 • 0.00381" 

9650 0.14074 • 0.00073 0.44004 • 0.00266 0.66182 • 0.003034 

9700 O. 14038 • 0.00081 0.43990 • 0.00241 0.66341 • 0.00344 a 

9750 0.14034• 0.43983• 0.66390• ~ 

9850 0.14044• 0.00077 0.43955 • 0.00241 0.66161 • 0.00304" 
9900 0.14029• 0.43958• 0.66253• 

10000  0.14025• 0.43965• 0.66321• 

15000 0.14024 • 0.44022 • 0.00131 0.66291 • 0.00158 

20000 0.14011• 0.43954• 0.66372• 

40000 ~13995 • 0.00079 0.43905 • 0.00236 0.66324• 0.00332 
60000 0.14055• 0.43967• 0.66147• 

80000 0.14022• 0.43948• 0.66305• 

b Errors are • one standard deviation, based on triangle inequality. Superscript "a" indicates 
a possible minor bug in measurement; see text. 
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the three squared radii, 2A 4 - - ?  for ( T ) ,  and - p  for f ]  by performing 
weighted least-squares regressions of  their logarithms against log N, using 
the a priori  error bars on the raw points (Table I II)  to determine both the 
weights and the error bars (ref. 128, Chapter  3). As a precaution against 
corrections to scaling, we performed the fit with a lower cutoff N >t N~n ,  
and we tried all possible values of  Nmi,. The X 2 value (sum of squares of 
normalized deviations from the regression line) can serve as a test of  good- 
ness of  fit. Let us define the "significance level" as the probability that X 2 
would exceed the observed value, assuming the correctness of  the power- 
law model and of  the raw-data error bars; this probability can be read off 
the X 2 distribution with ~ = n -  2 degrees of freedom (DF),  where n is the 
number  of  data points used in the fit. An abnormally large value o f x  2 (say, 
a level less than 5 %) may indicate either that  the pure power-law Ansatz 
is incorrect (e.g., due to corrections to scaling) or else that the claimed 
error bars on the raw data are too small; further investigation would be 
necessary to determine which of  these is the true cause. 2~ An abnormally 
small value of  X 2 (say, a level greater than 9 5 % )  probably indicates that 
the claimed error bars on the raw data are too large. 

The exponents estimated from fits to ( R 2 ) ,  ( R 2 ) ,  ( 2 R , , ) ,  and ( T )  
are plotted as a function of Nmin in Fig. 1. The exponent estimated from the 
fit to f is plotted in Fig. 2. Looking at the X z values in these fits, we find 
statistically significant corrections to scaling in ( R  z)  and ( R g  2) only for 
Nmi, ~< 200, in ( T )  only for Nmi . < 400, and in f only for N~a. < 6000. 
Using in each case the next larger value of  Nm~., we find: 

(R25 :  v = 0.74967 + 0.00011 

A = 0.77582 ___ 0.00138 

Nmi n = 300 

X 2 = 32.01 (34 DF,  level = 57 %)  

(Rg2): v=0.74963 +0.00008 

A = 0.10890 _ 0.00014 

Nmi n = 300 

X 2 = 29.01 (34 DF,  level = 71%)  

2~ Note also that an abnormally large change in X 2 as N~a . is increased by one step--that is, 
a drop in X 2 by an amount ~> 1--signals that the data point in question differs from the 
regression line by several standard deviations. This could indicate that the corrections to 
scaling at this value of N are significant, even though the overall xZ--which is dominated 
by contributions from larger N--may look reasonable. 
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< R2,, >: v = 0.74972 _+ 0.00021 

A = 0.34073 -I- 0.00123 

Nmi, = 1000 

X2=24.72 (26 DF, l eve l=54%)  

< T>: (2A 4 -  j / 2  = 0.74995 _+ 0.00010 

A = 1.36283 _ 0.00213 

N m i  n = 5 0 0  

X2=26.76 (32 DF, level= 73%) 

f :  p=0.19075 +0.00046 

A = 0.94095 + 0.00419 

N m i  n = 7200 

Z2=8.29 (7 DF, l eve l=31%)  

(error bars are one standard deviation). The results are in excellent agree- 
ment with the believed exact value v=3/4 ,  ("1,1~2) although some slight 
corrections to scaling clearly remain, and with the hyperscaling relation 
dv = 2 A  4 - -  y. 

For <R~>, <R2>, <R25, and <T>, better estimates of the (non- 
universal) amplitude A can be obtained by imposing the exponents 2v = 
2/14-~, = 3/2 and simply fitting observable/N 3n to a constant. For all four 
observables, this ratio declines very slightly with N; by N ~  5000 it is 
within error bars of its apparent asymptotic value. Taking Nmi n = 5000, we 
obtain 

<R~>: A=0.77106+0.00034 

Z2=20.58 (24DF,  l eve l=66%)  

<R~>: A =0.10817+0.00005 

X 2 = 20.75 (24 DF, level = 65 %) 

~R2>: A = 0.33894 + 0.00015 

X 2 = 21.56 (22 DF, level = 49 % ) 

< T>: A = 1.35158 +0.00047 

X2=22.26 (24 DF, l eve l=56%)  
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Fig. 1. Estimated exponent v from pure power-law fits to ( R e )  2 (I-q), ( R g )  2 ( 0 ) ,  and 
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Another approach is to fit o b s e r v a b l e / N  3/z to a + b ( N / l O 0 0 )  - ~  with a, b, 
and A all variable. 22 For  ( R ~ )  (for which we have data only at N>~ 1000), 
we are unable to obtain a decent fit with any value of  Nr~, available to us; 
the corrections to scaling at N>~ 1000 are too weak. For  ( R ~ ) ,  ( R ~ ) ,  and 
( T )  we obtain reasonable fits even for N m i  n = 100: 

( R E )  : a = 0.77100 + 0.00040 

b = 0.00098 __+ 0.00050 

d = 0.843 -+ 0.222 

X 2=35.13 (35 DF,  l e v e l = 4 6 % )  

( R ~ ) :  a=0 .10815  +0.00005 

b = 0.00011 _+ 0.00004 

A =0.943 _+0.148 

Z2=28.04  (35 DF,  l e v e l = 7 9 % )  

( T ) :  a =  1.35120_+0.00049 

b = 0.00269 _+ 0.00038 

A =0.919 _+0.057 

Z2=29.13 ( 3 5 D F ,  l e v e l = 7 5 % )  

Of  course, the exponents A produced by the above fits should not  be taken 
too seriously; they could well be phenomenological  "effective" exponents 
that summarize the combined effects of  two or more  correction-to-scaling 
terms (e.g., the leading nonanalytic correction N -aj  plus the analytic 
correction N -~) over some particular range of  N. These fits are never- 
theless useful in providing simple "interpolation formulas" that summarize 
our data within error bars: 

( R ~ )  = 0.77100N 3/2 + 0.33168N ~ (4.1) 

( R ~ )  = 0.10815N 3/2 -'[- 0.07653N 0.557 (4.2) 

( T )  = 1.35120N 3/2 + 1.53518N ~ (4.3) 

In particular, we can use these formulas to compare our data with other 
workers'  data at different values of  N (but only for N>~ 100). 

The upshot  is that  the corrections to scaling are quite weak in the 
two-dimensional self-avoiding walk; we can barely see them at our level of  
precision. A serious study of  corrections to scaling in this model would 

,.2 The purpose of writing here N/IO00 instead of N is to reduce the correlation between the 
estimates of b and zI. Of course, 1000 can equally well be replaced by any reasonable value 
which is roughly in the middle of the N values represented by the data points. 
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Fig. 3, 

0.68 

0.67 

0.66 

0.65 

0.64 

,,,[ 

I 

d=2 SAW I n t e r p e n e t r a t i o n  Ratio 

. . . . . . . .  I . . . . . . . .  I . . . . . . . .  I t 

,,I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I 
10 2 10 3 10 4 10 5 

N 

Interpenetration ratio ~u versus N, for two-dimensional SAWs. Note that ~ varies 
little for N >  100, and is constant within error bars for N >  1000. 

therefore require much higher statistics than are available here, at large but 
not-too-large values of N (say, 100~<N~<2000). We have begun such a 
study, and will report the results separately, c~29) 

The corrections to scaling on the amplitude ratios (Rg>/<Re>,2 2 
< 2 2 Rm>/< Re >, and ~ are even weaker  than  on the original  observables  (this 
is because the original corrections to scaling all have the same sign). The 
two ratios of radii have no statistically significant corrections to scaling, at 
our  level of  precision, even if one considers the true error  bars  to be ~ 1/3 
of those reported in Table IV. The interpenetration ratio does have 
not iceable  correct ions to scaling at  N < 500, but  these correct ions are very 
small: see Fig. 3. Fitting the data for N~> Nm~n to a constant, we obtain 

< R~>/< Rib = 0.140264 + 0.000073 

N~in---- 100 

Z2=2.86 (37 DF, level~ 100%) 

< R~>/< R~> = 0.439605 + 0.000338 

Nmi, = 1000 

Zz=0.74 (27 DF, level~ 100%) 



Monte Carlo Study of 2D and 3D SAWs 701 

~* = 0.66296 __ 0.00043 

N~t, = 1000 
X 2 = 1.45 (32 DF, level ~ 100 %) 

The theorists' interpenetration ratio [-defined in (2.16)] is ~ * =  
0.5579 _+ 0.0006. 

4.2. Three Dimensions 

In Table V we present our data for 2 2 <Re>u, (Rg}iV, <T>A,:r and the 
pivot-algorithm acceptance fraction f for SAWs in dimension d =  3 in the 
range 100~<N~<80,000. Most of these SAWs were generated using the 
pivot algorithm, using either dimerization or straight rods for initialization 
(see Appendix B for a discussion of the adequacy of thermalization); run 
lengths were between 2 • 106 and 4 x 107 pivots subsequent to thermaliza- 
tion. However, some data at N ~ 600 were generated by pure dimerization 
(between l0 s and 2 x 105 independent pairs of SAWs per run). The overlap 
T(co (]), co (2)) was in most cases estimated using the Karp-Luby algorithm 
(Section 3.7) with 100~<R~500; however, some runs at N~<1000 used 
deterministic algorithm # 3  (Section 3.3). Data tainted by the bug con- 
cerning < T> are again indicated by a superscript "a" (see Section 4.1). 

Table VI shows the results for the universal amplitude ratios 
2 2 <Rg}/<Re} and ~. The error bars are determined using the triangle 

inequality; they are probably overestimates by a factor of ~ 3. 
We began by fitting <R2>, <R2>, < T>, and f to the pure power-law 

R 2 Ansatz AN p . . . .  . The exponents estimated from fits to < e>, <R2>, and 
< T> are plotted as a function of Nm~, in Fig. 4. The exponent estimated 
from the fit to f is plotted in Fig. 5. Very strong corrections to scaling are 
apparent for all these observables; the exponent estimates do not appear to 
stabilize until one takes Nm~, >~ 104 o r  more. Nevertheless, the estimates of 
v do appear to be converging to a common value v m 0.5876; in particular, 
hyperscaling appears to be satisfied. 23 

Another view of these same fits is presented in Fig. 6: here we plot the 
--0.5 estimate of v versus Nm~ . . The idea here is that the correction-to-scaling 

exponent A t is predicted by RG calculations t1~176176 to be in the 
vicinity of 0.5 (see Section 5.1.2); if this prediction is correct, then each set 
of estimates should fall roughly on a straight line, at least asymptotically 
as Nmi . --* o0. The data are consistent with this prediction, but the large 
fluctuations make it clear that it will be difficult to get accurate estimates 
of A1 by Monte Carlo. 

2~ Note that the rigorous inequality dv >1 2 A 4 - ?  [see Theorem A.1 and Eqs. (A.20)-(A.22) in 
Appendix A] means that the limiting value of the upper pair of curves must be above or 
equal to the limiting value of the lower curve. 
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Table VI. Universal Ampli tude Ratios in Dimension d = 3  b 

N (R~>/(R~> W 

100 0.15813 • 0.00016 0.27693 • 0.00022 

150 0.15837• 0.27077• 

200 0.15853• 0.26710• 

300 0.15873• 0.26323• 

400 0.15869• 0.26100• 

500 0.15891• 0.25924• 

600 0.15899• 0.25794• 

700 0.15913• 0.25691• ~ 

800 0.15920• 0.25632• 

1000 0.15925• 0.25528• a 

1200 0.15946• 0.25418• a 

1500 0.15930 • 0.00060 0.25330 • 0.00104 

1800 0.15950• 0.25329• a 

2000 0.15940• 0.25293• ~ 

2500 0.15937• 0.25240• a 

2800 0.15945• 0.25179• ~ 

3000 0.15963• 0.25154• ~ 

3250 0.15941• 0.25137• ~ 

3500 0.15968• 0.25062• a 

3800 0.15974• 0.25088• a 

4500 0.15981• 0.25046• ~ 

5000 0.15979• 0.25016• ~ 

6000 0.15959• 0.25040• 

7000 0.15969• 0.24976• 

8000 0.15967• 0.24960• ~ 

10000 0.15949 • 0.00044 0.24957 • 

13000 0.15976• 0.24941• 

15000 0.15977• 0.24849• 

23000 0.15996• 0.24896• 

25000 0.15969 • 0.00047 0.24811 • 0.00085 

30000 0.15980 • 0.00049 0.24875 • 0.00090 

35000 0.15982 • 0.00050 0.24795 • 0.00087 

40000 0.15975• 0.24832• 

70000 0.15969 • 0.00067 0.24810 • 

80000 0A5989 • 0.00026 0.24766 • 0.00046 

b Errors are + one standard deviation, based on triangle inequality. Super- 
script "a" indicates a possible minor bug in measurement; see text. 
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Next we tried fitting (R~) ,  <Rg2), and ( T )  to the Ansatz 
A N  p . . . .  ..1_ B N  p . . . . .  a ,  where power = 2v for the squared radii and 3v for 
< T )  (we now assume hyperscaling). For each choice of fixed exponents v 
and A, we determine A and B by weighted least-squares and record the 
resulting X2; we then ask which pairs (v, A) lead to an acceptable ,t ,2. (Here 
"acceptable" is taken to mean a significance level > 3 2 %  for ~ = n -  2 
degrees of freedom, where n is the number of data points. This corresponds 
roughly to confidence limits of one standard deviation.) The results for 
(R~)  and ( T )  are shown in Fig. 7. (The result for (R~)  is similar to that 
for < R~), but the band of allowed values is wider.) For N~i, = 100 there 
are no  pairs (v, A) that are satisfactory for both (R~)  and < T) .  This means 
that at such small N one needs more than a single correction-to-scaling 
term to fit both observables in a way compatible with hyperscaling and 
universality. On the other hand, for larger Nmi. one obtains a swath of 
acceptable pairs ( v , A ) ,  all contained in the range 0.58715~<v~<0.5882 
and 0.36 ~< A <~0.80. From this analysis it seems difficult to obtain much 
precision on A, but it does suggest that 

v = 0.5877 _ 0.0006 

(subjective 68 % confidence limits). 

(4.4) 
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N o w  suppose we impose v=0 .5877  and fit observable/N p . . . .  [where 
power = 2v for the squared radii and 3v for ( T> ] to a + b (N / lO00)  - z  with 
a, b, and A all variable. For  Nmin ~< 200, the estimates of  A from these three 
fits are not  consistent (this might be guessed from Fig. 7). However,  for 
N~i, ~> 300 they are consistent, and yield A ~ 0.54-0.58. 

If  we now return to the Ansatz A N  p . . . .  + B N  p . . . . .  4 and take 
v=0 .5877  and A =0.56,  we obtain reasonable fits in <R~> for Nmi, > 150, 
in <R~> for Nmi n > 400, and in < T> for Nmi n > 600. Taking Nmi n = 600, we 

obtain 

(R~>:  A = 1.21667 + 0.00050 

B = -0 .48314 -4- 0.03949 

Z2=  13.73 (27 DF,  level = 9 8 % )  

(R2>:  A=0 .19455  +0.00007 

B = -0 .11432 -4- 0.00465 

X2= 13.63 (27 DF,  level = 98 %) 

( T>: A = 0.94477 +__ 0.00028 

B = 0.61687 +__ 0.01413 

Z 2 = 12.43 (27 DF,  level = 99 %)  

At the very least, these fits provide simple interpolation formulas that sum- 
marize our  data within error bars (but for N > 4 0 0  only): 

<R2> = 1.21667N 1'1754 

<R2> = 0.19455N H754 

< T> = 0.94477N 1"7631 

- -  0.48314N ~ (4.5) 

- -  0.11432N ~ (4.6) 

+ 0.61687N 1"2~ (4.7) 

If  we take these fits seriously, we obtain the results 

b(l)/t,(1) 1.48 +0.18 (4.8) Rg / v  Re ~ 

b(~)m(~) - 1 . 6 4 + 0 . 1 7  (4.9) 
A / v  Re = 

for the universal ratios of  correction-to-scaling amplitudes. 
Another  way to study the corrections to scaling is to look at an 

amplitude ratio which is known to tend to a nonzero constant as N - ~  
and fit it to a + b (N / lO00)  - z  with a, b, and A all variable. Two candidates 

2 2 are < Rg>/( R e ) and (assuming hyperscaling) ~. Unfortunately,  the correc- 
tions to scaling in 2 2 ( R g > / ( R e >  are too weak to yield much information on 
A (see Table VII): the amplitude b is within 2 -3a  of zero, and the error 
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Table VII .  Fits a a ( R g ) / ( R o ) = a + b ( N / l O 0 0 )  -a  w i t h  a, b, A all Var iab le ,  
fo r  3D S A W s  ~ 
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N~n a b A X 2 

100 0.16006 +0.00027 --0.00084_+0.00032 0.370+0.123 
200 0.15996 ___ 0.00026 --0.00072 + 0.00032 0.466 + 0.227 
300 0.15992 ___ 0.00024 --0.00067 + 0.00031 0.526 + 0.288 
500 0.15985 -I- 0.00022 --0.00059 + 0.00030 0.685 _ 0.498 

1000 0.15986_0.00029 --0.00059 +0.00032 0.668__+0.950 

2.20(32 DF, level ~ 100%) 
1.93(30 DF, level ~ 100%) 
1.78(29 DF, level ,~ 100%) 
1.38(27 DF, level ~ 100%) 
1.36(23 DF, level ~ 100%) 

The true error bars are probably ~ 1/3 of those indicated here (see text). 

b a r s  o n  A are  e n o r m o u s .  H o w e v e r ,  we c a n  o b t a i n  a r e a s o n a b l e  e s t i m a t e  o f  
the  u n i v e r s a l  l im i t i ng  v a l u e  2 2 ( R g ) / ( R e )  = a. N o t e  first  t h a t  t he  u n u s u a l l y  

2 2 smal l  Z 2 c o n f i r m s  o u r  be l i e f  t h a t  the  t r ue  e r r o r  b a r s  o n  ( R g ) N / ( R e ) N  a re  

r o u g h l y  .~ 1/3 of  t h o s e  r e p o r t e d  in T a b l e  IV. I f  so, t h e n  t he  e r r o r  b a r s  o n  

a, b, a n d  A in T a b l e  V I I  s h o u l d  a lso  be  r e d u c e d  b y  a f a c t o r  o f  ~ 3. M a k i n g  

this  a d j u s t m e n t ,  we c o n c l u d e  t h a t  

( R ~ )  = 0.1599 -t- 0.0001 _ 0.0001 (4.10) 

He re  the  first  e r r o r  b a r  r e p r e s e n t s  s y s t e m a t i c  e r r o r  due  to  u n c o n t r o l l e d  

c o r r e c t i o n s  to  sca l ing  ( sub j ec t i ve  6 8 %  c o n f i d e n c e  l imi t s )  a n d  the  s e c o n d  

e r r o r  b a r  r e p r e s e n t s  the  ( a d j u s t e d )  s ta t i s t i ca l  e r r o r  (c lass ica l  6 8 %  c o n -  

f idence l imits) .  

T h e  ana lys i s  of  7 t is m u c h  m o r e  f a v o r a b l e  for  e s t i m a t i n g  A, as  the  

c o r r e c t i o n s  to  sca l ing  a re  r a t h e r  s t r o n g  (Fig.  8). ( T h i s  is b e c a u s e  the  co r r ec -  

t ions  to  sca l ing  o n  ( T )  a n d  < R  2)  h a v e  o p p o s i t e  s igns,  as is e v i d e n t  f r o m  

Fig. 4.) A s a m p l e  o f  the  resu l t s  is s h o w n  in T a b l e  VII I .  N o t e  t h a t  the  

Table VI I I .  Fits ~ = a + b ( N / l O 0 0 )  -a w i t h  a, b, /1 all Var iable ,  for  3D S A W s  a 

N~,  ~* = a b A X 2 

100 0.24710-1- 0.00027 0.00819 -I- 0.00029 0.561 + 0.013 
200 0.24705 -I- 0.00034 0.00826 _ 0.00041 0.556 -I- 0.026 
300 0.24714 + 0.00036 0.00813 + 0.00046 0.569 + 0.035 
500 0.24717 -I- 0.00045 0.00808 + 0.00056 0.573 -I- 0.057 

1000 0.24711 -I- 0.00063 0.00815 + 0.00062 0.562 _ 0.105 
1500 0.24715 -I- 0.00083 0.00822 + 0.00089 0.574 + 0.201 

3.67(32 DF, level ..~ 100%) 
3.57(30 DF, level ~ 100%) 
3.22(29 DF, level ~ 100%) 
3.06(27 DF, level ~ 100%) 
2.92(23 DF, level ~ 100%) 
2.82(23 DF, level ~ 100%) 

The true error bars are probably ~ 1/3 of those indicated here (see text). 
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Fig. 8. Interpenetration ratio ~g versus N, for three-dimensional SAWs. Note that ~ is a 
decreasing and convex function of N, in flagrant disagreement with the prediction of the two- 
parameter renormalization-group theory. 

Fig. 9. 

d=3  SAW I n t e r p e n e t r a t i o n  Rat io 
0.28 . . . . . . . . . . . . . . . .  

0.27 

.-~ 0 .26  

0.25 

0 .24  . . . .  I . . . .  I . . . .  I . . . .  I 

0 .00  0 .02  0 .04  0 .06  0 .08  
N-~ 

Interpenetration ratio ~ versus N -~ for three-dimensional SAWs. The regression 
line is ~=0 .24707  +0.39312/N ~ Note the excellent linearity of the plot. 
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estimates of  ~*,  b, and A are quite stable as  Nmi n is increased, and that the 
error bar on A is remarkably small. (The unusually small X 2 confirms our 
belief that  the true error bars on ~ are roughly ~ 1/3 of those reported in 
Table IV. If  so, ~then the error bars on ~u*, b, and A should also be reduced 
by a factor of  ,~3.) The excellent fit can be seen graphically in Fig. 9; 7 t is 
amazingly close to a linear function of  N -~ This confirms our expecta- 
tion that the correction-to-scaling exponent A1 is approximately 0.5, and 
suggests that  it may be slightly higher, a round 0.56. A fair estimate would 
be 

A 1 = 0.56 -4- 0.03 (4.11 ) 

(subjective 68 % confidence limits). On  the other hand, the A produced by 
the above fit could well be a phenomenological  "effective" exponent that 
summarizes the combined effects of  two  or  m o r e  correction-to-scaling terms 
(e.g., the leading correction N - z '  plus the analytic correction N - I )  over 
some particular range of  N. The only way to sort this out would be to use 
a larger Nmi, together with improved statistics. In any case, we can 
estimate the universal limiting value 

~u* = 0.2471 _ 0.0001 _ 0.0002 (4.12) 

(We have again made the factor-of-3 adjustment in the statistical error 
bar.) The theorists' interpenetration ratio [defined in (2.16)] is ~ * =  
0.2322 -4- 0.0001 _ 0.0003. Since ~*  > 0, hyperscaling is satisfied. 

5. D I S C U S S I O N  

5.1. Compar ison w i t h  Previous Numer ica l  Studies  

5.1.1 .  Two Dimensions .  We first compared our raw data with 
those of  other studies, (13~ ~0,131,132.129) making direct comparisons where the 
values of  N match and using the interpolation formulas (4.1)-(4.2) at other 
values of N. 24 We find excellent agreement, with one perplexing exception: 
when compared with the extremely precise data of  ref. 129, our  values for 
( R  2) and ( R g  2) are about  3.5tr low at N =  100, and slightly low (<2t r )  
at 200 ~< N~< 500. Interestingly, these are precisely the runs that were per- 
formed using pure dimerization, while the runs at N >  500 used the pivot 
algorithm. It is therefore conceivable that our  dimerization program has a 
subtle bug which causes a very small error (perhaps one that decreases 

24 Warning: We believe that the theoretical premises of ref. 132 are erroneous, in that the 
authors fail to distinguish correctly which quantities are universal and which are non- 
universal. (See Section 1.2 above.) Nevertheless, the Monte Carlo data in ref. 132 are useful. 
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with N). However, we have been unable to find any such bug, and the 
small discrepancy could well be a statistical fluke. 

Our  estimates of  the universal ratios <R~)/(R~) and 2 2 
agree perfectly with the best published estimates ~131) and have roughly the 
same precision. In particular, they confirm the beautiful conformal- 
invariance prediction of  Cardy and Saleur (133) (as corrected by ref. 131) 

246 <R~)  ( R  2 )  + 1 = 0  
91 ( R ~ )  - -2  (---~e2) 

(5.1) 

Much more precise data will be available soon/129) 
To our  knowledge there are no previous series-extrapolation or Monte 

Carlo estimates of  ~*  for two-dimensional polymers. 25 But we can com- 
pare our  value with field-theoretic estimates: 

Monte Carlo, simple cubic lattice, 0.66296 + 0.00043 
1000 ~ N~< 80,000 (this work) 

Edwards model through order e 2, 0.8243 
naive sum (Appendix D below) 

Edwards model through order e z, 0.6647 
exploiting d= 1 value (Appendix D below) 

This last estimate is amazingly close to the correct value; it would be inter- 
esting to know whether this close agreement is an accident. 

5.1.2. T h r e e  D i m e n s i o n s .  We first compared our  raw data with 
those of  other studies, "35, ~0,132,136,137,118.138,139) making direct comparisons 

where the values of  N match and using the interpolation formulas 
(4.5)-(4.6) at other values of  N. 26 We fred excellent agreement. We also 
compared our  raw data with Nickel's interpolation/extrapolation formulas 
[ref. 13, Eqs. (6) and (7)],  which are based on exact enumeration of  short 
chains combined with high-precision Monte Carlo data at N ~< 2560. The 
agreement for ( R  2> and (R~> is excellent: most  of  the points differ by 
less than la,  about  20% differ by between l a  and 2a, and none differ by 
more than 2<r. However,  for ( T >  there are some modest  discrepancies: for 
N~< 600 and N = 800, our  values are all between 2a and 5.2a lower than 
Nickel's; while for N~> 15000, about  half of our  values are between hr  and 
3<r higher than Nickel's. We do not know whether either of  these discrepan- 
cies is real, or  what might be its cause. We suspect that  it arises simply 

ZSTablelX (see Section 5.2 below) gives the values of ~r for N~<7, from exact enumera- 
tion. " ~  But this series is much too short to be usefully extrapolated. 

26 Warning: Reference 118 uses an unconventional definition of (R~>; it is (1 + 1/N)2 times 
ours. Note also that the data of refs. 136, 137, and 139 lack error bars. 



Monte Carlo Study of 2D and 3D SAWs 715 

f rom stat is t ical  e r rors  in Nicke l ' s  r aw da ta  for ( T )  (which  migh t  be  several  

t imes as large as o u r  e r rors ) ;  these w o u l d  induce  stat is t ical  e r rors  in the 

coefficients o f  his e x t r a p o l a t i o n  fo rmula ,  which  w o u l d  in tu rn  induce  
correlated stat is t ical  e r rors  at  nea rby  values  of  N. 

N e x t  we c o m p a r e  o u r  es t imates  of  the  cri t ical  exponen t s  v and  A1 wi th  
prev ious  work:  

M o n t e  Car lo ,  s imple  cubic  latt ice,  100 ~<N<~ 80000 (this work) :  

v = 0.5877 _ 0.0006, A 1 = 0.56 _ 0.03 

M o n t e  Car lo ,  s imple  cubic  and  B C C  latt ices,  120 ~<N~<2400~135): 

v = 0.592 ___ 0.002 

M o n t e  Car lo ,  s imple  cubic  latt ice,  200 ~< N~< 3000c1~ 

v = 0.592 _ 0.002 

M o n t e  Car lo ,  s imple  cubic  latt ice,  200 ~< N~< 7168(1~s): 

v = 0.5909 _+ 0.0003 

Series ex t r apo l a t i on ,  va r ious  lattices~4~ 

v = 0.592 + 0.003 

RG,  n = 0 field theory(l~176 

v = 0.5880 _ 0.0015, A1 = 0 . 4 7 + 0 . 0 2 5  

RG,  n = 0  field t heo ry  (11~ 27: 

v = 0.5872 + 0 .07(g* - 1.39) _ 0.0004 

Edwards  m o d e l  t h r o u g h  o r d e r  z6, (9z)" 28 

v ~ 0.588, A l ~ 0.473 

E d w a r d s  m o d e l  t h r o u g h  o r d e r  Z-6, (93L 28 

v ,,~ 0.5886, A 1 ~ 0.465 

27 The best estimate of ref. 110 for g* is 1.39. Comparison of refs. 107 and 110 suggests that 
the uncertainty in g* may be of order 0.03-0.04. This would add an extra uncertainty of 
order 0.002-0.003 to v. 

28 The term of order z 7 has recently been obtained, (N~ but the extended series has not yet (to 
our knowledge) been analyzed. 
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(all Monte Carlo error bars are one standard deviation). It is clear in retro- 
spect that the earlier Monte Carlo estimates, c'35:~ based on shorter 
walks than those used here, were biased upward due to corrections to 
scaling. (This effect is seen very clearly in Fig. 4. Moreover, if we truncate 
our own data to lie in the same range of N as the previous studies, 
the resulting estimates of v are almost identical to the quoted ones.) We 
have now done what we believe is a careful analysis of the corrections to 
scaling, and we have obtained reasonably good control over them. We 
therefore think that the current estimate is correct within its claimed 
error bar. (But we could be wrong!) We do not know why the series- 
extrapolation estimates are also high, but it could arise from the same 
effect; perhaps the walks probed in these analyses (up to 20-30 steps) 
are simply not long enough to permit an adequate analysis of corrections 
to scaling, even using the most sophisticated differential-approximants 
methods. 

The amazing fact is that the Monte Carlo estimates of v have stabilized 
at almost exactly the value predicted by the field-theoretic calculations in 
their various equivalent forms ( n = 0  field theory r176176 or Edwards 
model~9'-93"~l~ The very high accuracy of the field-theory calculations 
is rather surprising to us, since this method is susceptible to serious 
(and quite possibly undetectable) systematic errors arising from a 
confluent singularity at the RG fixed point. r The weakness of this 
effect may be related to the apparent fact r that the confluent expo- 
nents 1/A~ and 32/A~ are both very close to an integer (namely, they 
are ~2). 

On the other hand, for the confluent exponent /tl ,  the agreement 
between our Monte Carlo estimates and the field-theoretic predictions is 
not so good. Our Monte Carlo data for ~ can be fit amazingly well, all the 
way down to N =  100, by the Ansatz ~e= a + b i N  4 with/I  = 0.561 _ 0.004 
(statistical errors only). The exponent differs considerably from the field- 
theoretic predictions, which all lie at A ~  0.47. We do not know which of 
these estimates, if either, is the correct one--indeed, there are good reasons 
to be distrustful of both! On the one hand, our Monte Carlo estimate 
could well be a phenomenological "effective" exponent that summarizes the 
combined effects of two or more  correction-to-scaling terms (e.g., the leading 
correction N - z '  plus the analytic correction N -~) over some particular 
range of N. (To test this, we would need to go to larger Nmi, and obtain 
significantly improved statistics.) As things stand, our data do not rule 
out the field-theoretic prediction zt~ ~0.47, provided that one includes 
suitable subleading correction-to-scaling terms. On the other hand, the 
field-theoretic prediction for A~ should also be taken with a grain of salt: 
it arises from the slope of the fl-function at the fLxed point g =g*,  and as 
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NickelS33,141) showed long ago, this function has, in addition to the desired 
term linear in g - g * ,  also nonanalytic terms proportional to (g* _g)l/a~, 
( g .  _ g)a2/a,, and the like (see Section 5.2 below for further discussion). But 
the numerical methods currently employed O~176 to extrapolate 
the perturbation series from g = 0 to g = g* assume, contrary to fact, that 
fl(g) is regular at g = g * .  The presence of terms ( g * - g ) P  with 1 < p < 2  
could well lead to systematic errors in estmates of the slope fl,(g.).(33) It 
is therefore worth considering the possibility that the true A 1 is indeed 
closer to ~0.56 than to ~0.47, and that the error bars on the field- 
theoretic estimates may be overoptimistic. 

Let us also make a brief comparison with the experimental results on 
polymers in a good solvent; a more detailed analysis will appear else- 
where. (143) The most systematic data on the static scaling behavior of high- 
molecular-weight polymers in a good solvent were obtained in the 1970s by 
three Japanese groups, (~44-146) using polystyrene in benzene. These data 
were reanalyzed, shortly after the appearance of the RG predictions for 
v/147) by Cotton/14s) After making corrections for polydispersity, Cotton 
obtains the value v = 0 . 5 8 6 + 0 . 0 0 4 ~ i n  good agreement with the RG 
prediction, and now in good agreement with the Monte Carlo data as well. 
Unfortunately, we believe that this experimental value is unreliable, for the 
following reasons(143): 

1. The samples of Yamamoto et al/~44) have an unknown polydisper- 
sity, but this polydispersity is certainly not zero (as Cotton's 
analysis implicitly assumed). 

2. The measurements of Fukuda et al. (145) were apparently afflicted 
by a serious systematic error (of magnitude ranging from 5 % to 
18 %) arising from the way that the solution concentration was 
measured: see ref. 149, footnote 19. 29 

3. The data from the three different laboratories cover almost-non- 
overlapping ranges of molecular weight. As a result, the combined 
analysis of the three sets of data is highly susceptible to the effects 
of small systematic discrepancies in absolute calibration between 
the three laboratories, as well as to the fact that the three 
laboratories used slightly different temperatures (30~ for refs. 144 
and 145 and 25~ for ref. 146). 

29 Unfortunately, it will not suffice simply to replace the measurements of Fukuda et aL (~4s) 
by those of Utiyama et aL 049~ o n  a subset of their samples, because these latter 
measurements may suffer from a systematic error of their own, arising from the extrapola- 
tion to zero scattering angle: see ref. 150 footnote 30. 
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. The raw data lack error bars. As a result, it is impossible to di: 
tinguish corrections to scaling (or systematic experimental error,, 
from statistical errors. This distinction is crucial to extracting 
reliable value for v, as our  analysis of Monte  Carlo data h~ 
demonstrated. 

A new generation of experiments, using modern  ultrasensitive light-scatterin 
ins t rumentat ion <ls~-~s3~ and an optimal statistical analysis, t154) could pro~ 

to be very exciting. 
Next let us compare our  estimates of the universal ratio (Rg)/(R.Z 2 

with previous work: 

Monte Carlo, simple cubic lattice, 
100 ~< N~< 80,000 (this work) 

Monte Carlo, simple cubic lattice, 
120 ~< N ~< 2400 t13s~ 

Monte Carlo, body-centered-cubic lattice, 
120 ~< N~< 2400 ~135~ 

Monte Carlo, simple cubic lattice, 
200 ~< N ~< 3000 ~ Jo~ 

Monte Carlo, simple cubic lattice, 
200 ~< N~< 7168 IIts~ 

Monte Carlo, simple cubic lattice, 
26 ~< N~< 3328 Ij3s~ 

Edwards model through order z 4~3s~ 

0.1599 -I- 0.0001 + 0.0001 

0.1597 -t-0.0003 

0.1594 _+0.00015 

o. 1603 + 0.0004 

0.1596 -+0.0002 

0.16003 + 0.00003 

0.16012 + 0.00030 

(all Monte  Carlo error bars are one s tandard deviation). The agreement 
excellent? ~ It is worth not ing that (R2)/(R~) is nonmono ton ic  as a fun, 
tion of N: for small N ( < 1 5 ) ,  exact enumerat ion t'56'~39) shows th~ 
( R ~ ) / ( R ~ )  is considerably above its limiting value ,~ 0.1599; but  for larg, 
N (e.g., 100 ~<N~< 1000), out data in Table VI show unequivocally th~ 
(R~) / (R  2) is below its limiting value; and our fit (Table VII) sugges 
that as N ~  ~ the approach to the limiting value is also fi'om below. 
would be interesting to know whether series-extrapolation techniques ca 
"sense" this nonmonotonic i ty  (which lies beyond the present enumeration= 
and predict approximately the correct limiting value. 

30 There also exists a calculation in the Edwards model to second order in e=4--d, ~ b 
unfortunately this expansion is too ill-behaved to be extrapolated reliably to e= 1 (s 
ref. 10, p. 183). 
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Next let us compare our  estimates of  the limiting interpenetration 
ratio ku* with previous work: 

Monte Carlo, simple cubic lattice, 0.2471 + 0.0001 + 0.0002 
100 ~< N ~< 80,000 (this work) 

Monte Carlo, simple cubic lattice, 0.2465 + 0.0012 
13 ~< N~< 2500 (13:s7) 

Edwards model through orderz 2, 0.2092 
Pad6 [ I/I ] (Appendix D below) 

Edwards model through order ~2, 0.2686 
naive sum (Appendix D below) 

Edwards model through order e 2, 0.2486 
exploiting d= 1 (Appendix D below) 

(all Monte  Carlo error bars are one standard deviation). 31 Our  estimate is 
thus consistent with the very recent Monte Carlo estimate of  van Prooyen 
and Nickel/~3']57) but is about  four times as precise. The Edwards-model 
(renormalization-group) estimates are all of  the right order of magnitude, 
but most  of  them are not  terribly close to the correct answer. (This is 
hardly surprising, in view of  the very short perturbation series on which 
these estimates are based.) The e-expansion result augmented by exact 
information at d = 1 is, however, amazingly close to the correct value, both 
in d = 3 and d = 2. It would be useful to obtain a better understanding of  
whether this is a coincidence or  no t - -pe rhaps  by calculating the O(e 3) term 
in ~g*. 

Finally, it is worth noting that the experimental values for ~* also lie 
in the range 0.22-0.25 (ref. 11, Section 10.F; ref. 98, Sections 2.2.5 and 
2.2.6)--or, more optimistically, they average to 0.245 __+ 0.005. tla8) However,  
the experimental measurements of  ~u are subject to all the problems noted 
earlier, as well as the danger of  additional serious systematic errors arising 
from curvature in the extrapolation to zero concentration. This is a par- 
ticularly severe problem for older studies which used higher concentrations 
in order to compensate for the less-sensitive light-scattering instrumenta- 
tion then available. Again, new experiments would be highly desirable. 

As explained in Section 1.2, also the ratios of  correction-to-scaling 
amplitudes b~/b~ ) and ~(])//n(1) �9 "a :~'R, are universal. So ideally we would like to 

r - e .  
measure these amphtude ratios and compare them with the Edwards-model 
prediction vh")/~(~)Rg~R, = 1.249+0.035. (~38) Unfortunately, the correction-to- 
scaling amplitudes are extremely sensitive to the choice of  exponents v and 
A]. Therefore, the only sensible comparison that can be made is to impose 

3~ Note also that Table IX (see Section 5.2 below) gives the values of ~ for N<~ 7, from exact 
enumeration. (~34) But this series is much too short to be usefully extrapolated. 
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the same values of v and A t as are used in ref. 138--namely, v=0.588 and 
At = 0.47--and then perform a weighted least-squares fit to estimate the 
amplitudes. Unfortunately, the resulting estimates of the correction-to- 
scaling amplitudes are highly unstable as a function of Nmin. If we take 
Nmin = 3000, we obtain b(~, ) = -0 .10+0 .05  and b~)=  -0.17___ 0.05, hence 
b t l ) / h ( t )  - 1.7 + 1.8--not a very useful estimate! R g  I v R e  - -  

Finally, we can compare the estimates of the pivot-algorithm accep- 
tance-fraction exponent p: 

Monte Carlo, simple cubic lattice, 
100 ~< N ~< 80,000 (this work) 

Monte Carlo, simple cubic lattice, 
200 ~< N~< 3000 tl~ 

Monte Carlo, tetrahedral lattice, 
49 ~< N ~< 9999 ~ Jvj 

Monte Carlo, simple cubic lattice, 
100 ~< N ~< 1600 (t 37) 

p ~ 0.105 or perhaps lower 

p = 0.1069 + 0.0009 

p~0 .1146  

p~0 .103  

There is a slight discrepancy between our results and the very careful work 
of Ziffererttl7); we do not understand its origin. It is conceivable (though 
in our opinion unlikely) that the critical exponent for the pivot-algorithm 
acceptance fraction might vary from one three-dimensional lattice to 
another. More likely, the magnitude (and even the sign) of the corrections 
to scaling may vary radically between lattices. 

5.2. The Sign of Approach to q)* 

For several decades, most work on the behavior of long-chain polymer 
molecules in dilute solution txSs-~6~ has been based on the "two- 
parameter theory" in one or another of its variants: traditional (Flory- 
type) [ref. 159, Sections 11 and 16 (pp. 69-73, 110-118) and parts of 
Sections 15, 20b, and 21b (pp. 94-110, 153-164, 167-169); see also ref. 12, 
Section 8.1 (pp. 289-313),1; pseudo-traditional (modified Flory-type) 
[ref. 159, most of Section 15 (pp. 94-110) and parts of Sections 20b and 21b 
(pp. 153-164, 167-169); also see ref. 161"1, or modern (continuous-chain 
type). 32 All two-parameter theories predict that in the limit of zero concen- 
tration, the mean-square end-to-end distance <R2), the mean-square 
radius of gyration <R2>, and the interpenetation ratio ~ depend on the 

32 These theories take as their starting point the Edwards model of a weakly self-avoiding con- 
tinuous chain. ~sS-sg,':2) (The Edwards model is also equivalent to the continuum ~04 field 
theory with n = 0 components.) See des Cloizeaux and Jannink ~ for a detailed treatment 
of the Edwards model. 
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degree of polymerization N (or equivalently on the molecular weight 
M = N M  . . . . . . .  ) according to 

( R ~ )  = ANFR, (bN  ) (5.2a) 

(RUg) = ANFR,(  bN)  (5.2b) 

7 / = F~,(bN) (5.2c) 

where FR,, FRg, and F v  are claimed to be universal functions (which each 
specific two-parameter theory should predict), and A and b are non- 
universal scale factors depending on the polymer, solvent, and temperature, 
but independent of N. [The conventional notation is 0c~ = FR,, 0t~= 6FR, , 
h = O~dsF~,/z, and z = (bN)  2-a/2 in spatial dimension d.] Moreover, virtually 
all the theories--and in particular the modern continuous-chain-based 
theories--predict that F~, is a monotone increasing and concave function of 
its argument bN, which approaches a limiting value ~* ,,~0.2-0.3 (for 
d = 3 )  as b N ~  oo. 

But our Monte Carlo data for the self-avoiding walk (Figs. 3 and 8) 
show precisely the opposite behavior: ~ is a decreasing and convex func- 
tion of N, which approaches a limiting value 7/*~0.2471 ( d = 3 )  or 
~t, ~, 0.6630 ( d = 2 )  as N--* oo. The same behavior was found by Nickel. ~x3> 
The decrease of ~v with N is strong in d =  3 and weak (but noticeable) in 
d= 2 .  

In retrospect, this behavior is heuristically almost obvious: Short self- 
avoiding walks behave roughly like hard spheres, i.e., ~g is of the same 
order of magnitude as the hard-sphere value (2.20) (see Table IX). On the 
other hand, long self-avoiding walks are fractal objects, i.e., "thinner" than 
hard spheres, so one expects ~*,~  ~ghard-sphere" This is manifestly true in 
dimension d~>4 (where ~ * = 0 )  and in dimension d = 4 - e  [where 
7/*= e/8 + O(e2)]; it is natural to expect (and we now confirm) that it is 
true also in d = 3, and to a lesser extent in d = 2. Of course, in d = 1 SAWs 
are hard spheres (i.e., hard rods), so ~ * =  ~hara_sphere. 33 (The monotonic 
decrease of ~*/~hara-sphc~e as a function of d is shown in the last line of 
Table IX.) If one now conjectures the simplest behavior, namely that ~gN is 
a monotonic function of N, it follows that (in dimension d>~2) ~N must 
approach its limiting value ~* f rom above. 

There is also experimental evidence 195-98) that for real polymers in a 
sufficiently good solvent, the approach to ~* is from above, contrary 
to the two-parameter theory. This behavior was considered to be a 

33 In d =  1, ~u  is essentially constant with N; it differs from ~* only by corrections of 
order 1/N arising from the discreteness of the chain. The exact formula is ~uo= 
(2/x/~)(N + 1/2)/[N(N+ 2)] 1/2. 
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Table IX. ~u N for Short Chains (Rounded t o  Four Decimal Places) from Exact 
Enumerations (la4) Along with our Monte Carlo Values for ~ *  

d = l  d = 2  d = 3  d = 4  

~Vhard.sphcrc 1.1284 4/3 1.6186 2 
~VN ffi t 0.9772 0.7427 0.6585 0.6755 
~N = 2 0.9974 0.7048 0.5000 
~n, .  3 1.0197 0.7004 0.4508 
~v~r ffi 4 1.0365 0.6938 0.4216 
~VJv- 5 1.0490 0.6918 0.4033 
~VN = 6 1.0586 0.6891 0.3884 
~Nffi7 1.0662 0.6882 0.3777 

~* 1.1284 0.6630 0.2471 0 
~/*/~'/hard-sph�9 1 0.4972 0.1527 0 

perplexing "anomalous effect" and various purported explanations were 
advanced. ( 162, ~ 63, 96 ) 

The correct explanation, in our opinion, was given three years ago by 
Nickel (~3) (see also refs. 14 and 15): theories of two-parameter type are 
simply wrong. Indeed, they are wrong not merely because they make 
incorrect predictions, but for a more fundamental reason: they purport to 
make universal predictions for quantities that are not in fact universal. 
Two-parameter theories 34 predict, among other things, that ~ is a univer- 
sal function of the expansion factor oc~ = 2 2 . ( Rg) / (Rg)  to, in particular, ~ is 
claimed to depend on molecular weight and temperature only through the 
particular combination 0tZs(M, T). This prediction is quite simply incorrect, 
both for model systems and for real polymers. Indeed, even the sign of the 
deviation from the limiting value ~* is not universal. 

All this has a very simple renormalization-group explanation, t~3-~5) so 
it is surprising that it was not noticed earlier. As mentioned already in 
Section 1.2, standard RG arguments predict, for any real or model polymer 
chain, the asymptotic behavior 

( R~) = AR N~(1 + b~W -4' + ...) (5.3a) 

= + + . . .) ( 5 . 3 b )  

v~, ,, + .-.) (5.3c) 

3* More precisely, two-parameters theories in which the scale factor A is independent of 
temperature. In ref. 15 these are termed "strong two-parameter theories." 
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as N ~ ov at fLxed temperature T > To. The critical exponents v and A 1 are 
universal. The amplitudes AR,, AR: b~ ), b~ ), b~  ) are nonuniversal; in fact, 
even the signs of the correction-to-scaling~amplitudes b~], b~], b~ ) are 
nonuniversal. However, the RG theory also predicts that the dimensionless 
amplitude ratios AR~/AR~, ~*, bm/b t~) and 1,(1)/h(~) R~ / R,, ~ ~" ~ R~ are universal, t ~ 3, 9o) 

Recently, however, several papers have appeared (~64-~67) which attempt 
to explain the observed approach to ~* from above in terms of either an 
alleged "second branch" of the renormalized field theory with renormalized 
coupling constant g greater than the fixed-point value g*,~16s'166'~67) or an 
"extended two-parameter theory" containing an extra parameter. r 
We confess that we have been unable to understand the conceptual basis 
of these papers. Here is our attempt (~4,~5) to clarify what is going on: 

We believe that critical phenomena are best understood in a Wilson-type 
(or "Wilson-de Gennes-type") renormalization-group framework, t169'16~ 
By this we mean an RG map ~ acting on the (infinite-dimensional) space 
of Hamiltonians for a field theory or polymer model with some (fixed) 
ultraviolet cutoff A < c~ (i.e., living on a lattice); the map ~ acts by 
integrating out the high-momentum (short-wavelength) degrees of 

""t~ d 

Ha r 

H~s 

Fig. 10. Wilson--de Gennes-type renormalization-group flow on the critical surface. H* 
(resp. H~s) in the Gaussian (resp. good-solvent) fixed point, v~, (resp. -gu) is the stable (resp. 
unstable) manifold of H*. Case la: Models in the good-solvent regime may have correction- 
to-scaling amplitudes that are either negative (P, R) or positive (Q). Case If: The initial 
Hamiltonians H,, approach the stable manifold, while the low-energy effective Hamihonians 
H~g----~"H,, approach the unstable manifold. 

822/80/3-4-15 
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freedom. 35 We wish to contrast this with a "field-theoretic" RG, ~71,tl't2) 
which acts in a (finite-dimensional) space of continuum (renormalized) field 
theories or polymer models (i.e., models with the ultraviolet cutoff already 
taken to infinity) by spatial dilation. A few paragraphs from now we will 
explain the field-theoretic RG in terms of the Wilson RG (and we will see 
that the reverse is not possible). But for the moment let us simply proceed 
with the Wilson approach. 

Figure 10 (taken from ref. 14) shows part of the (Wilson) renormaliza- 
tion-group flow for a cutoff field theory or polymer model in dimension 
3 ~<d<4. Here H* is the Gaussian fixed point (which for 3 ~<d<4 is also 
the fixed point controlling the theta-solvent behavior), while H *  s is the 
nontrivial (=good-solvent = Wilson-Fisher) fixed point. (Please ignore for 
now the curves ~ ,  ~ ' , ,  and cr More precisely, Fig. 10 shows the flow on 
the critical surface (corresponding to correlation length ~ = oo in the cutoff 
field theory, or chain length N =  oo in the polymer model). Noncritical 
models (i.e., ~ < oo or N <  oo) lie above the plane of the page. Both H*  
and H~s have unstable (=relevant)  directions coming out of the page, and 
these trajectories lead to the infinite-temperature fixed point H *  (which 
has ~ = 0 or N =  0). 36 

We must now distinguish two very different limiting situations in 
polymer theory: 

(I) N---,ov at fixed temperature T, where either (a) T > T  o, 

(b) T =  To, or (c) T <  T o . 

(II) N ~  or, T ~  To with x = N # ( T  - To) fixed, where $ is a suitable 
crossover exponent. 

Roughly speaking, case Ia corresponds to the good-solvent regime, while 
case II corresponds to the crossover regime near the theta point. 37 

35 For example, for a continuous-space field theory with ultraviolet cutoff A, the map ~ could 
be integration over field components with momenta in the shell A/2< IPl ~<A~69~; for a 
lattice field theory, ~ could be passage to block spinstJ7~ for a discrete polymer chain, 

could be decimation of odd-numbered sites along the chain. ~t6~ 
36 For readers familiar with the Wilson RG in field theories and spin systems, ~t69,tT~ the 

following remarks may be helpful: The unstable direction at H*  leading out of the page 
(toward H * )  corresponds roughly to a tp 2 interaction (i.e., a "mass term"); the unstable 
direction at H*  leading (in the page) toward Hds corresponds roughly to a ~0 4 interaction; 
the stable directions at H*  correspond roughly to r r (Vtp)4,... interactions. [There is 
also a marginal interaction (V~o) 2, which we ignore here as it corresponds to a physically 
trivial rescaling of field strengths. ] 

37 However, it is crucial to understand that cases I and II refer to families of limiting paths in 
the (7", N) plane, not to "regions" or "domains" of the t'mite (T, N) plane. Failure to 
appreciate this distinction--which may at first seems rather pedantic---can lead to apparent 
paradoxes regarding the sign of the correction-to-scaling terms. 
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Case Ia applies to any one-parameter family ~ of Hamiltonians, 
parametrized by the chain length N, that transversally intersects the critical 
surface (i.e., the plane of the page) at some point within the domain of 
attraction of H*s (i.e., anywhere to the right of u//s). For example, the 
family ~- could intersect the critical surface at P, Q, or R (among many 
other places). Then, the critical exponents and universal amplitude ratios 
[cf. (5.3) ff.] associated with the limit N ~  oo in the family ~ are completely 
determined by the RG flow in an infinitesimal neighborhood of H ' s ;  they 
are therefore the same for all families intersecting the critical surface within 
the domain of attraction of H*  s ("universality"). On the other hand, the 
nonuniversal amplitudes arise from the entire history of the RG flow that 
takes ~ to H ' s ;  they are therefore different for different families ~ .  For 
example, a family crossing the critical surface at P or R would approach ~* 
from below, while a family crossing at Q would approach ~* from above. 
The nonuniversal amplitudes cannot be predicted except through detailed 
knowledge of the microscopic physics (i.e., of the family ~-). In particular, 
they cannot be predicted by any "coarse-grained" theory (such as a renor- 
malized field theory), or indeed by any simple mathematical model. 

As will be explained below, the manifold JCu (which extends also out 
of the plane of the page) corresponds to the continuum Edwards models, 
with the plane of the page corresponding to z = oo. It is important to note 
that r162 has no special status with respect to the good-solvent fixed point 
H ' s ;  it is merely one of many trajectories whose intersection with the 
critical surface is attracted to * HGs. The universal properties of polymer 
chains in a good solvent (case Ia) can indeed be extracted from the limit 
z ~ oo of the continuum Edwards model; but they can be extracted equally 
well from the limit N ~  oo of any family .~ whose intersection with the 
critical surface is attracted to * Hcs .  One family may be more convenient for 
computation than another, but all have the same conceptual status. 

Let us now explain the relation between the Wilson RG and con- 
tinuum field theories. Let H*  be any critical fixed point (for the moment 
it does not matter whether H*  is Gaussian), and let r162 (resp. JCu) be the 
stable (resp. unstable) manifold of H*. 3s Continuum limits are obtained 
by taking a sequence of initial Hamiltonians H,  approaching the stable 
manifold, and rescaling lengths by suitable factors. This rescaling is equiv- 
alent to applying' the map ~ a suitable number of times. The low-energy 
effective Hamiltonians err_ H n = ~ ' H ,  then tend to the unstable manifold (see 
Fig. 10). Continuum field theories F are thus in one-to-one correspondence 

3s For simplicity let us assume that there are no marginal operators. The presence of marginal 
operators (such as the r operator at the Gaussian fLxed point in d= 3) does not affect the 
fundamental conclusions, but merely induces multiplicative logarithmic corrections. 



726 Li et  al. 

with Hami l ton ians  H on the unstable  manifold:  the corre la t ion functions of 
F at  momen ta  IPl ~< A are equal to the corre la t ion  functions of  H with 
cutoff A. This po in t  of view has been emphasized by Wilson  and K o g u t  (169) 
and others.C171' 170) 

In par t icular ,  the Gaussian fixed po in t  H *  has (in dimension 3 ~< d <  4) 
a two-dimensional  unstable  manifold  ~'u: the two unstable  directions 
cor respond to ~o 2 and ~0 4 interact ions (or  in po lymer  language,  a chain- 
length fugacity and a two-body  se l f - in terac t ion))  9 So ~'u cor responds  to 
the manifold  of  superrenormal izable  ~0 4 con t inuum field t h e o r i e s - - o r  in 
po lymer  language,  to the con t inuum Edwards  model.  

We can now unders tand  the connect ion between the Wilson  and field- 
theoret ic  renormal iza t ion  groups.  4~ The homogeneous  field-theoretic R G  
equat ions  (173-175) describe how a family of  con t inuum field theories is 
m a p p e d  into itself under  spat ial  di lat ion.  On the other  hand,  the con- 
t inuum field theories are in one- to-one correspondence  with Hami l ton ians  
on the unstable  manifold;  and  this correspondence  takes spatial  di la t ion 
into the R G  map  ~ .  Thus,  the field-theoretic R G  is nothing other  than the 
Wilson R G  restricted to the unstable manifold and then rewrit ten in terms 
of  " renormal ized"  parameters .  

Having  unders tood  this, we can now evaluate  the a t tempts  t~68'166'167) 
to explain the "wrong" sign of  app roach  to ~u* (or  the analog  in l iquid-gas  
critical points)  in terms of  an alleged "second branch"  of the renormal ized 
field theory,  located at  g > g..41 The t rouble  is that ,  as far as we know, 
no such branch exists. As explained above,  con t inuum field theories 
cor respond to the unstable  manifolds  of  critical fixed points.  Thus,  the 
alleged "second branch"  could exist only if there were an as-ye t -unknown 
critical fixed poin t  * Hne w lying somewhere to the right of  H ~ s ,  par t  of 
whose unstable  manifold  is a t t rac ted  to H *  s. There is (to our  knowledge)  
no evidence whatsoever  for the existence of  such a fixed point.  42 

39 We ignore here the marginal operator (Vcp) 2, which corresponds to a physically trivial 
rescaling of field strengths. 

4o This connection was worked out by Kupiainen and Sokal in 1983, and was quite possibly 
known to others as well. However, to our knowledge it first appeared publicly in ref. 14. 
Very similar ideas appeared earlier in work of Hughes and Liu. 1172) 

41 Of course, no such explanation is needed, because we have already given a complete and 
straightforward explanation in terms of the Wilson RG. But there would be no harm in giving 
an alternate explanation of the same phenomenon--provided that this explanation is correct! 

42 The nonexistence of such a branch of continuum field theories seems to be recognized by 
Kriiger and Sch~ifer, who note (ref. 166, abstract and p. 764) that "the strong coupling 
branch implicitly relies on the existence of a finite segment size" (~-ultraviolet cutoff). But 
on the other hand they insist that renormalized field theory can be used for g > g* (ref. 167, 
top p. 3518). We do not understand how these two statements can be reconciled. Perhaps 
Kriiger and Sch~ifer want to study the cutoff field theories to the right of H~s. But there 
is no distinguished one-parameter family of such theories (i.e., the putative extension of 
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The  conven t iona l  f ie ld- theoret ic  R G  a p p r o a c h  (7]']68't66'167) makes  

ano the r  e r ro r  in assuming  tha t  the f l -funct ion descr ibing the f ield-theoret ic  

R G  flow is regular  at g = g * .  In  fact, as po in ted  ou t  long ago  by 
Nickel,(33,141) the f l -funct ion shou ld  be  expected to con ta in  nonana ly t i c  terms 

like ( g * - g ) l / ~ ,  ( g . g ) ~ 2 / z t  and  m a n y  others.  This  can  easily be under -  

s tood  in ou r  Wi l son- type  R G  f ramework:  The  f ield-theoret ic  f l - funct ion 

describes the Wi l son  R G  flow restr ic ted to the uns tab le  mani fo ld  ~ ' ,  ( and  
rewri t ten in terms of  the " r eno rma l i zed"  p a r a m e t e r  g). N o w  J r  has no  spe- 

cial s tatus at  H ' s :  like every  o the r  R G  t ra jec tory  (except  for a measure -ze ro  

set of  except iona l  t rajectories) ,  it approaches  H *  s t angen t  to the leading 
i r re levant  direct ion;  bu t  ba r r ing  a mi racu lous  coincidence,  ~ ' ,  p re sumab ly  

also has  nonze ro  c o m p o n e n t s  (wi th  respect  to the non l inea r  scaling fields at 

H ' s )  in all of  the subleading  i r re levant  direct ions  (see Append ix  E). This  

induces nonana ly t i c  terms (g*-g) ,~2/ ,n , ,  ( g , _  g),~3/a~ .... in the fl-function. In 
addit ion,  the analyt ic  cor rec t ions  to scaling at H * s  induce  nonana ly t i c  terms 
like ( g * - g ) l m , ,  ( g , _  g)2/,~, .... in the fl-function. (33)'43 

.//,); there is simply the infinite-dimensional space of all cutoff theories (with complicated 
Hamiltonians as well as simple ones) lying to the right of H~s, all of which have equivalent 
conceptual status. The same objection applies to the "extended two-parameter theory" of 
Chen and Noolandi. (t64'~6s~ Perhaps their extra parameter is intended to correspond to the 
coefficient of the leading irrelevant coupling at H~s; but in that case it is merely an 
inordinately complicated restatement of (5.3) ff., and moreover it neglects the second and 
higher irrelevant couplings. Of course, one could consider the manifold corresponding to 
the vanishing of the second and higher irrelevant couplings (with respect to the nonlinear 
scaling fields at H 's) ;  but this manifold, on the left side of H~s, presumably does not coin- 
cide with ~r (see Appendix E). Finally, we believe that the same objection applies to the 
second half of Nickers paper (ref. 13, after p. 1359), in connection with his "recursion 
model." He seems to realize this, as he describes the upper branch in his simplified recursion 
model as "quasiuniversal." 

43 In this paragraph we have been assuming g to be a physical dimensionless renormalized 
coupling constant (e.g., a dimensionless ratio of correlation functions evaluated at some 
suitable momenta). Sch~ifer 067) has argued that the situation is different ifg is taken to be 
the renormalized coupling constant defined by dimensional regularization with minimal 
subtraction: in this case one has in dimension d 

fl(g, d ) = ( d - 4 ) g +  g21~(g) 

where ]~(g) is independent of d; and since ]~(g) is presumably a regular function (except 
possibly at some isoIated values of g), fl(g, d) would then be regular at g* (except possibly 
for some isolated values of d). The trouble with this argument is that dimensional 
regularization is defined (at least at present) only order-by-order in perturbation theory, i.e., 
at the level of formal power series in g; so the assertions about the regularity of fl( g, d) and 
/~(g) have (at present) no precise meaning. It would be very interesting to try to fred a non- 
perturbative characterization of dimensional regularization with minimal subtraction--and, 
if such a characterization could be found, to reanalyze the validity of this intriguing argu- 
ment. (We thank Prof. Sch~ifer for correspondence concerning this point.) 
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In summary, the field-theoretic/~-function is nonanalytic as g T g*, and 
is (as far as we know) not defined at all for g> g*. These facts cannot be 
understood by manipulation of formal expressions within renormalized 
field theory, but they can be understood when the renormalized field theory 
is placed within the Wilson-type RG context. 

Finally, this framework allows us to understand ~4'~5) the special role 
played by the continuum Edwards model. This model has no special status 
at H~s ,  but it does have special status at H*: it is the unstable manifold 
~,, .  For this reason, the continuum Edwards model describes the universal 
crossover scaling behavior in an infinitesimal region just above the theta tem- 
perature, namely the limit N--* oo, T--* To with x - - N r  - To) fixed >/0 
(case II above), where ~b = 2 - d / 2  for 3 < d < 4  and ~b= 1,2 x 1og-4/ll for 
d =  3. *4 That is, the continuum Edwards model controls the behavior of 
any two-parameter family o ~ '  of Hamiltonians that transversally intersects 
the critical surface in some curve cg which in turn transversally intersects 
~ ' ,  (see Fig. 10). Since the theta point is beyond the scope of the present 
paper, we refer the reader to refs. 14 and 15 for details. 

5.3. Prospects for Future W o r k  

Let us close this paper by mentioning briefly some interesting areas for 
future work. 

Higher virial coefficients can be studied by the same methods that we 
have used here to study the second virial coefficient. For example, the third 
virial coefficient between molecules of types i, j, k is (~~ 

B(3Uk'=�89 ~ ~ Wi(s) Wj(s') Wk(s")[1--e -~o''~ 
s e S i  x" e Z  d 
s' ~ Si x"  r Z d 

s" ~ S k 

x [ l - e --'~'klC0'~)'tx"'~"))] [ 1 -- e - ~Sk, X'.,'),~-~".,"~)] (5.4) 

[compare (2.13)], where the interaction energy U is given as usual by 
(2.14). The ratio B~N'N'm/B CN'm~ is expected to be universal for polymers in 3 / 2 

a good solvent, and it would be interesting to know its value. (At present, 
only a crude field-theoretic estimate is available: Ba/B2,,~0.517, based on 
first-order perturbation theory. 45) It should be noted that this quantity 
plays a crucial role in the extraction of the second virial coefficient from 
experimental light-scattering data, due to the necessity of extrapolating to 
zero concentration. ~43) 

44By the latter expression we mean that in d=3 the correct scaling variable is x= 
NJ~(log N) -4/tl (T -  T 0 ) .  (176-178) 

45 See des Cloizeaux and Jannink [ref. 12, p. 544, Eq. (13.1.28)]. Note that in their notation 
4 ~ B3/B ~ = ~h(.)/g(z)- [compare their Eq. (13.1.2)]. 
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The "hit-or-miss" algorithm (Section 3.5) can easily be generalized to 
compute the nth virial coefficient, given n independent SAW samples. 
Moreover, the efficiency should remain reasonably good whenever hyper- 
scaling holds. We do not know whether the Barrett and Karp-Luby 
algorithms can be generalized to virial coefficients of order n >/3. Finally, 
the deterministic Fourier method (Section 3.3) can be applied to the third 
virial coefficient and to at least some of the graphs for virial coefficients of 
order n >/4 (namely, those graphs that can be decomposed into series and 
parallel connections). For example, to compute B3, one first uses the 
Fourier method to compute p~2(X) and thus I~2(x ), and likewise for 13 
and 23; one then computes (122 * ~3 */23)(0) by passing" to Fourier space. 

Another interesting extension of our work would be to study the 
Domb-Joyce model (1791 of weakly self-repelling walks, in which each self- 
intersection is penalized by a weight e -~ (0~2~< + ~ ) ;  obviously this 
model interpolates between ordinary random walks ( 2 = 0 )  and SAWs 
(2 = + ~ ) .  This model can be studied in two very different limits: 

(Ia) N-- ,oo at fixed 2 > 0 .  

(II) N--* o% 2 --* 0 with x - 2 N  2-a/2 fixed. 

Case Ia is the good-solvent regime, and the universal quantities should take 
exactly the same values as for SAWs (for any 2 > 0). On the other hand, the 
nonuniversal quantities will manifestly be 2-dependent; we expect the 
approach to ~*  to be from below for small 2 and from above for large 2. In 
particular, there will be some intermediate value 2 ,  for which the leading 
correction to scaling will vanish. (In Fig. 10 this would be achieved, e.g., by a 
family of Hamiltonians that crosses the critical surface about halfway between 
P and Q.) Of course, subleading corrections to scaling will still be present, but 
these will be suppressed by N -a2, which decays much more rapidly than 
N -4~. By studying the Domb-Joyce model systematically in the (2, N) plane, 
it should be possible to locate 2 ,  empirically, and to exploit this knowledge 
to obtain estimates of v, gt,, and other universal quantities that are less con- 
taminated by the effects of corrections to scaling. (We thank Jim Barrett and 
Bernie Nickel for this observationfl 4)) This is in the same spirit as the 
analyses of series expansions by Chen eta/. ,  (38'41) who found that by varying 
an irrelevant parameter and imposing universality, they could reduce the sen- 
sitivity of exponent estimates to the effects of corrections to scaling. 

Case II in the Domb-Joyce model should be given (rather trivially) by 
the continuum Edwards model. This fact is hardly in doubt, but the results 
could serve as a useful nonperturbative check on the reliability of the 
extrapolations to large z in the Edwards model. (92'93) This is a warm-up for 
the problem of the crossover scaling behavior near the theta point. 



730 Li e t  at. 

The deepest--and most difficult---extension of this work would be to 
SAWs with nearest-neighbor attraction, for the purpose of studying the 
crossover scaling behavior near the theta point. In dimension d =  3, the 
crossover scaling functions are predicted tl4'ls) to be given exactly, modulo 
two nonuniversal scale factors, by the continuum Edwards model. In 
dimension d =  2, there is as yet no theoretical prediction for the crossover 
scaling functions, but there are some predictions for critical exponents, t~8~ 
It  is a highly nontrivial problem to develop Monte Carlo algorithms that 
work well near the theta point. The pivot algorithm (taken alone) does not 
work terribly well in this regime, t~s~'~82) 

APPENDIX  A. S O M E  GEOMETRICAL  T H E O R E M S  

In this appendix we prove some geometrical bounds on T(A, B ) -  
# ( A  - B )  and U(A, B) [see (3.1) and (3.9)] that played a role in Sections 
2 and 3 of this paper. When averaged over pairs of independent SAWs of 
length N, these bounds show that: 

(a) ( T )  ~< const x N dv 
(b) ( T )  >~cons txN 2~ 

(c) ( U ) > ~ 2 1 o g N  

modulo the usual assumptions on the scaling of individual SAWs. In par- 
ticular, bounds (a) and (b) together prove (modulo these assumptions) 
hyperscaling for SAWs in dimension d = 2. 

A.1. Theorems and Proofs 

Let us begin by defining several measures of the size of a set A ~ zd: 

�9 The span in the 0tth coordinate direction 

S~(A) = max e~. x - min e~. x (A.1) 
x ~ A  x ~ A  

where e~ is the unit vector along the 0~ axis ( 1 ~< ~ ~< d). 

�9 The Euclidean diameter 

d iam(A)=  max IIx-x' l l2 (A.2) 
X, X' E A 

where II" II: denotes the Euclidean norm. 

�9 The sup-norm diameter 

d i a m , ( A ) =  max IIx-x ' l l~o= max S~(A) (A.3) 
x , x ' ~ A  I ~ d  

where Ilxll~ = m a x l ~ < a  le~.xl. 
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Let R be a positive real number. A set A c Z d is said to be R-connected 
if for all pairs x, x ' e A  there exists a sequence X=Xo, x~ ..... x, ,=x' of 
points in A such that Ilxi-x,_,llo~ <~R for 1 ~<i<~n. A set is said to be 
connected if it is 1-connected. (Note that this allows diagonal as well as 
nearest-neighbor connections.) 

Finally, we let Aa(R) be the maximum number of lattice points in a 
closed Euclidean ball of radius R, namely 

Ad(R)= sup # { x ~ Z d :  IlX-xoll2<~R} (A.4) 
x0 e R d 

Note that Ad(R)=zdRa+ O(R d-l)  as R--+ 0% where ra=2nd/2/[dF(d/2)] 
is the volume of the unit ball in R d. 

T h e o r e m  A.1. Let A, B c Z d. Then 

d 

# ( A - B ) < ~  1-~ [S~(A)+S~(B)+ I] (A.5) 
a = l  

# (A -- B) <<, Aa(diam(A) + diam(B)) (A.6) 

T h e o r e m  A.2. Let A, B be R-connected subsets of 7/d (d~> 2). Let 
GacO(d) be the orthogonal symmetry group of 7/a [so that 
#(Ga) = 2ad! ]. Then 

1 Z #(A-gB)>~l--1---diamoo(A)diamoo(B) (A.7) 
#(Ga) geGa ~ "  2R2 

T h e o r e m  A.3. Let A, B c 7/a. Then 

.,vao- i 1 JV'ma x -- ~rr, i, + 1 
U(A,B)>~2 ~, -~+ (a.Sa) 

k = 1 Xmi, 

>/1og(JVmax + 1 ) + log ~Umi, (A.8b) 

where Jl'min = m i n i  # (A) ,  # ( B ) ]  and JVmax = max[ # (A) ,  # (B) ] .  The first 
inequality is the best possible in terms of J l~n and Jlrmax . 

Proof of Theorem A. 1. These bounds follow immediately from the 
fact that the set A -  B can be contained in a rectangular parallelepiped or 
a sphere of the indicated size. I 

Proof of Theorem A.2. Let us consider the case d =  2 first. Fix 
g e  G2. There exist 1/> 1 and xt ..... x t~A  such that Ilxi-x,_,llo~ <~R for 
i = 2  ..... I and Ilxz-x~]l~, =diam~o(A). Similarly, there exist J>~ 1 and 
Y] ..... y s~gB  such that [lYj-Yj-]IIo~ ~<R for j = 2  ..... J and I[yj-Yallo~= 
diamo~(gB) = diamo~(B). Then Lemma 8.1 of Aizenman (49) implies that 
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1 
# ( A -  gB) >~-~ Ilxz-x~ll2 [lYJ- Y~II2 Isin O(xz- x~, y j -Y~)I  

1 
>~-5 diamo~(A)diamo~(B)IsinO(xi-xl ,  YJ-Y l ) I  (A.9) 

where O(v, w) is the angle that the vector w makes with respect to the 
vector v. 

Let g+ ~ G2 be the operator of rotation by +n/2. Then for any vectors 
v and w, O(v, g+ w) = O(v, w) + re/2, so 

[sin O(v, w)] + [sin O(v, g+ w)[ = Isin O(v, w)l + [cos O(v, w)l/> 1 (A.10) 

From (A.9), we see that 

# ( A - g B ) +  # ( A - g + g B ) > > . l  diamo~(A)diamo~(B) (A.11) 
R 

The theorem for d =  2 now follows by averaging (A.11 ) over all g ~ G2 and 
dividing both sides by 2. 

Now consider the case d>~ 3. Fix g ~ Ga. Choose indices fl and fl' so 
that Sp(A)=diamoo(A) and Sp,(gB)=diam~o(B). If flv~fl', then let P be 
the orthogonal projection of Z d onto the (fl, fl') coordinate plane. If fl =fl ' ,  
then let fl" be any element of {1 ..... d}\{fl}, and let P be the orthogonal 
projection onto the (fl, fl") coordinate plane. Let h ~ Gd be the rotation by 
+n/2  in the (fl, fl') [or  (fl, fl")] coordinate plane, which leaves all the other 
coordinates fixed. Note that Ph = g + P, where g + ~ G2 was defined above. 
We now use the result (A.11) for d = 2 :  

#(A - gB) + # ( a  -hgB)  >1 # (PA -PgB)  + # (PA -PhgB)  

1 
/> ~ diam~(PA) diam oo(PgB) 

1 
= ~ diam o~(A) diamo~(B) (A. 12) 

The theorem now follows by averaging, as for the d =  2 case. I 

We remark that some strengthened versions of Theorem A.2, while 
quite plausible at first sight, are wrong. For example, we at first thought 
that for 1-connected sets (and in particular walks) in Z 2, 

# (A - B) >/const x SI(A ) S2(B) (A.13) 

This is false, since if A and B are both N-step self-avoiding walks from 
(0,0) to (N/2, N/2) that stay in the diagonal strip Ix,-x21~<l, then 
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# ( A -  B ) ~  N, while SI(A)S2(A)~ N 2. Thus one must  average over rota- 
tions in some way. We had also conjectured that  for any sets A, B c Z 2, 

# ( A - B ) +  # ( A - g + B ) > ~ C  #Projl(A) #Pro j2 (B)  (A.14) 

where Proj~ is the projection onto the x ,  coordinate  axis, and g+  is rota-  
tion by ~/2; here C is a constant  that  is independent of  the connectedness 
R. A counterexample to this conjecture was found for us by G. L. O'Brien, 
as follows: Let M be a large integer, and let 

A=B={(O,O)+k(I ,M)+I(M,--1):O<<,k , l<M} (A.15) 

(This is a large, sparse square, slightly tilted.) Then # P r o j ~ ( A ) =  
# P r o j 2 ( B ) = M  2, but  # ( A - B ) = # ( A - g + B ) ~ 4 M  2. We still do not 
know if (A.14) holds if its left-hand side is replaced by the left-hand side of  
(A.7) with d = 2 .  

Proof of Theorem A.3. Throughou t  this proof,  we shall assume 
without loss of  generality that  ~ = # ( A ) ~ > J V 2 -  # (B) .  

To show that the first inequality is the best possible, let A (resp. B) con- 
sist of Jl/~ (resp. ~ )  consecutive sites on the xl axis (so A and B are parallel 
rods). Then it is easy to check that  the first inequality holds as an equality. 

Let v be a vector  in R e such that  the inner-product  mapping  x ~-* v. x 
is one-to-one on A u B. (For  example,  the coordinates of  v could be d irra- 
tional numbers  that  are linearly independent over the rationals.) Denote  
the elements of  A by a~,..., a~-j, ordered so that  v.ai < v.ai+~ for every i. 
Similarly, denote the elements of  B by bl ..... b ~  2, ordered so that  v.bj< 
v. bj+ 1 for every j. 

�9 We shall use the following observation: 

Observation 1. If  ag- bx, - = a~- b,, for some i,/, m, then l ~< i. 

(To prove this, note that  the hypothesis implies that  a i - a ~ =  b s 2 -  b,,, 
and so v. a ; -  v- aj = v. b , -  2 - v. b,,/> 0. Therefore v. a~ >/v.  al, which implies 
l~< I'.) The proof  of the following observation is exactly analogous: 

Observation 2. If  ax, - b j = a , , - b l  for s o m e L / ,  m, then l<~j. 

We now claim that  for any i, 

p(ai-b~,~ 2) <~ i (A.16) 

To prove this, observe that  p(x) equals the number  of  distinct a~'s in A 
such that  x ~ a t - B .  But if a i - b ~ 2 6 a t - B ,  then 1~< i by Observat ion 1. 
This proves (A.16). Next,  we can use Observat ion 2 in an analogous way 
to prove that  for any j ,  

p(ax-bj)<~ j (A.17) 
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Now define the following subsets of  A -  B: 

S '=  {a~-b.,,2: i =  1 ..... A ~ -  1} (A.18a) 

S" = {a,. ,  - b / j =  1 ..... A:,_- 1} (A. lgb)  

S " =  { a k -  b,.2: k = ~ ..... ,A/~} (A.18c) 

It follows from Observat ion 1 that  S '  and S" are disjoint, and from 
Observat ion 2 that  S" and S"  are disjoint; trivially S'  and S"  are disjoint. 
Therefore 

1 1 1 

z x s 
x ~ S '  :r " ."  "" 

.1~-11 A ~ -  A~ + I 
/>2 , . .  ~ +  -77- (A.19) 

k f f i l  

where the last inequality uses (A.16), (A.17), and the trivial bound 
p(x) ~< ~4/~. A simple compar ison  of Riemann sum to integral shows that  

" k - l  ~>log(n+ 1). I ~ " k f f i  I 

A.2. Appl ica t ion  to S A W s  

Now let us apply these bounds to the case in which A and B are inde- 
pendent SAWs co (ll, co 12) of  length N. We first note that the spans St ..... Sd 
and the diameters D and D ~  of either one of these SAWs are expected to 
scale like N ~ in the sense that  

(sk i  qk,tl'lIDm N(kl + ... +ka+l+.,)', ""  o a ~  ~oo)  ~ (A.20) 

for any exponents k~ ..... ka, l, rn >~0. (In particular,  this holds if the prob-  
ability distribution of the SAW, with lengths rescaled by N ~, converges 
weakly to some probabil i ty measure  on a space of cont inuum chains with 
respect to which the spans have finite nonzero moments . )  

Assuming such scaling, it follows that  ~v N is bounded as N ~  c~. 
Proof" By Theorem A.1 we have 

d 

T(~176 1I  [Soc((-~ -{- Sot( C0(2})-{- 1] (A.21) 
a = l  

But from this and (A.20) it easily follows that  

CN.N_ (T(co(i), c.ol2~)> N,N ~< const x Nav (A.22) 
c% 
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Assuming the usual scaling (2.6) for the radius of gyration, it follows that 
~u N is bounded as N---, oo. 

Equation (A.20) also implies that 

( T(co ~l), o9~2))) N.N >~ const x N 2v (A.23) 

in any dimension d >/2. This may be deduced from Theorem A.2 as follows. 
Since 6eN (the set of all N-step SAWs which start at the origin) is invariant 
under lattice symmetries, we have 

1 
( T(co ~ , 09'2))) N,N =-- ~- ~ # (C0(')-- O) '21 ) 

1 
-- 2 #(Gd) ~ ~ #(~176 

CN gEGd r ~ ~ 'N  

1 
>~ 2c 2 ~ diam o~(09 II~) diam ~.(co ~2~) 

N (O ( I ),0)(2) ~ "-~'N 

1 
= ~  (Doo) 2 (A.24) 

and combining this with (A.20) gives (A.23). 
Lastly, we observe that the scaling assumption (A.20) implies that 

hyperscaling holds in two dimensions. Indeed, Eqs. (A.22) and (A.23) 
together imply that 

(T(co(I),of2)))N,N~const• when d = 2  (A.25) 

A P P E N D I X  B. A D E Q U A C Y  OF T H E R M A L I Z A T I O N  
IN THE P IVOT A L G O R I T H M  

As pointed out in Section 2.2, the initialization of the pivot algorithm 
is a highly nontrivial issue. For not-too-large N (up to a few thousand at 
least), one can use the dimerization algorithm ~121"~'83) to produce a perfect 
equilibrium start. However, for very large N, dimerization is unfeasible, 
and it is necessary to "thermalize" the system by discarding the first ndisc >> 
r~xp ~ N / f  iterations. But this is painful, because rexp is a factor ~ N larger 
than rint,A for global observables A, and for very large N ( >~ 105) the CPU 
time of the algorithm could end up being dominated by the thermalization. 
One is therefore tempted to cut corners in the choice of ndisc. In this 
appendix we want to illustrate how acquiescing to this temptation can lead 
to disaster in the form of large systematic errors. 

Figure 11 shows the temporal history of our pivot-algorithm run for 
the three-dimensional SAW at N = 70,000. The initial configuration was a 
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(a) 

2 x l O  s 

c~ ~ l x l O  6 

OxlO 6 

OxlO 8 

d = 3  SAW, N = 7 0 0 0 0 .  Bin  s i z e  = 1 0 0 0 0 0  

. . . .  I . . . .  I . . . .  ] . . . .  I 

. . . .  I . . . .  I . . . .  L . . . .  I 
I x l O  6 2 x l O  6 3 x l O  6 4 x 1 0  6 

P i v o t s  

{b) d = 3  SAW, N = 7 0 0 0 0 ,  Bin s i z e  = 1 0 0 0 0 0  
1 ~ 1 7 6  . . . .  I . . . .  I . . . .  ] . . . .  E 

I 

0 . S x l O  9 

0 , 6 •  9 

0 . 4 x l O  9 

O.~x 10 9 

O . O x l O  9 

O x 1 0  6 I x 1 0  6 2 x l O  s 3 x l O  6 4 x l O  6 
P i v o t s  

Fig.  I I .  Averages  o f  ( t op )  R~ a n d  ( b o t t o m )  T over  bins o f  w id th  l05 i tera t ions ,  for  the pivot  
a l g o r i t h m  o n  a simple cubic  lattice a t  N =  70,000 wi th  pa ra l l e l - rod  s tar t .  
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pair of parallel rods. We averaged the observables R~ and T over bins of l0 s 
pivot iterations each, and plotted the resulting averages for the first 40 bins. 
Clearly, severe initialization bias is present in R~ until at least time 4 x l0 s, 
and in T until at least time 8 x 105. (Here we used the following seat-of-the- 
pants criterion: if the value at bin n is larger than all subsequent bins and 
smaller than all preceding bins, then severe initialization bias is present at 
time n.) Significant initialization bias--enough to cause a systematic error 
comparable to the (very small) statistical error----vould well be present at 
times twice or three times this. So, to be safe, we discarded in this case the 
first 3 x 1 0  6 iterations. (The total run length was approximately 8 x 1 0  6 itera- 
tions, so a little less than half of the run was discarded.) 

In general, we expect the thermalization to require a time proportional 
to rexv ~ N/f, where f is the pivot-algorithm acceptance fraction. From the 
run shown in Fig. 11, we infer that severe initialization bias is present until 
at least time "~3N/f Therefore, to be safe, we have always discarded at 
least 9N/f iterations (except of course for runs using a dimerized start). We 
believe that this rule is sufficiently conservative to render the systematic 
errors arising from inadequate thermalization much smaller than the 
statistical errors. 

APPENDIX C. SOME STATISTICAL SUBTLETIES 
Let A~ ..... A,  be the time series for some observable A (in equilibrium). 

As discussed in ref. 10, Appendix C, the error bar on the sample mean A =  
n-t ~']'=1Ai is 

(2"tint ~ICAA (0))  I/2 
s tddev(A)~ - ' - -  (C.1) 

where 
CaA(t) -- ( AsAs+,) -- ( A )  2 (C.2) 

PAA(t) = CAa(t)/Cxa(O) (C.3) 

rint,A = i paA(t) (C.4) 

Since ri,t,A and CAa(0) are not known, they must be estimated from the 
time series: we define 

~AA(t) = 1 ,,-1,1 
n--l t l  ~ (A i - -A) (A i+I ' I -X)  

i = 1  

~AA(t) = ~A,4(t)/~AA(O) 
M 

=�89 zint.A E /~AA(t) 
t =  - - M  

where we must still choose the "window" M. 

(c.5) 

(c.6) 

(c.7) 
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lO -I 

m + 
II ,< 

v 

d=2 SAW, N = i000, Autocor re la t ion  Func t ion  

10~ . . . . . . . .  I 

]0  -2 

10 -3 

I ~ i =,1111 

i0 

(a) 

, , , , , , ,  

100 1000 
t (pivots) 

] 0 -4 

(b) d=2 SAW, N = I000, Autocorrelation Function 

10~ ~ '  . . . . . . .  I . . . . . . . .  I 

< 

b l o  -2  - 

c~ 

1 0 - a  _ 

10-'1 . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I 

i0 I00 i000 
t (pivots) 

Fig. 12. Log-log plot of the sample autocorrelation function flAA(t) for (a) A=R~, 
(b) A=R~, and (c) A=TKarp_Luby,R=20 for the pivot algorithm on a square lattice at 

N =  1000. 
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(c) d = 2  SAW, N = i 0 0 0 ,  A u t o c o r r e l a t i o n  F u n c t i o n  

I00  
. . . . . . . .  [ . . . . . . . .  I . . . . . . . .  l 

. i 0  - l  

p 
c~ 

E--- *l 10 .2 

~ 10 -a  

10-4  

m 

. . . . . . .  I . . . . . . . .  I . . . . . . . .  I 

10 lO0 1 0 0 0  
t ( p i v o t s )  

Fig. 12 (contb~ued) 

One reasonable approach to choosing M is the "automatic windowing 
algorithm" of ref. 10, Appendix C: choose M to be the smallest integer such 
that M>_. c~i,t,A(M), for a suitable "window factor" c. If  p~,4(t) were 
roughly a pure exponential, then it would suffice to take, e.g., c ~ 5 (since 
e - 5 <  1%). However, for global observables A in the pivot algorithm, 
PAA(t) is expected to be very slowly decaying: after a brief initial decay, one 
e x p e c t s  PAn(t)~ 1/t ~-' up until a time of order rex p ~ N/f, after which time 
PAA(t) decays rapidly. This is the behavior exhibited by the exact solution 
of the pivot algorithm for ordinary random walk, where pAA(t) ~ 1/t in the 
intermediate region (ref. 10, Section 3.3). We confirmed this behavior 
empirically for the self-avoiding walk by making an extremely long (n = 108 
pivots) simulation at N =  1000 (d=2) :  the sample autocorrelation func- 
tions ~AA(t) for A - -  2 2 --Re, Rg, TKarp._Luby. R=2 o are shown in a log-log plot in 
Fig. 12. For R~, there is a wide intermediate region ( 2 0 < t <  1000) in 
which the log-log plot is roughly straight, yielding pAA(t)"~ 1/t q with 
q ~ 1.0-1.2. For R~ there is more curvature, but the slope q is in the same 
ballpark. F o r  ZKarp_Luby,  R = 2 0 ,  in contrast, the curvature is so great that we 
are unable to identify an intermediate region with clear l i t  q behavior. In 
any case, we have rough empirical confirmation for the theoretically 
predicted behavior; we are unable to say whether q = 1 or q = 1 + p or 
something else, but clearly q ~ 1. 

822/80/3-4-16 
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Table X. Standard W i n d o w i n g  Est imate  ~l.t,A and Mod i f i ed  Est imate  l~l.t,A for  
the  Observables A = R~, R~,  RZm, TK.~p_L.bv,R=lS o, as a Funct ion of W i n d o w  

Factor c, for S A W s  on the  Square Latt ice at N =  80,000 ~ 

_ 2 A=R2,,, A = TK_L.R~150 A = R  2 A - R ~  

C ~int, g~ "~int,/~ 2 " ~iat.R2z "~int.R2r ~int.R~ "~int, g ~ ~int, r "~int, r 

2 1.198 5.213 1.873 11.247 1.455 8.128 0.914 5.227 
3 1.270 4.667 2.287 11.465 1.771 7.413 1.168 6.564 
4 1.363 4.166 2.641 11.523 1.898 7.153 1.350 7.161 
5 1.394 3.837 2.889 11.489 1.997 7.117 1.492 7.470 
6 1.447 3.914 3.074 11.562 2.108 6.806 1.613 7.905 
7 1.487 3.609 3.236 11.918 2.194 6.547 1.713 7.925 
8 1.518 3.602 3.374 12.221 2.241 6.419 1.851 8.640 
9 1.532 3.526 3.523 12.023 2.313 7.317 1.955 7.801 

10 1.555 3.380 3.648 12.255 2.374 7.144 2.051 8.661 
11 1.575 3.257 3.755 11.394 2.433 7.482 2.135 8.936 
12 1.600 4.291 3.833 11.911 2.484 7.606 2.215 9.243 
13 1.612 4.265 3.918 11.300 2.530 7.276 2.280 8.321 
14 1.632 3.793 3.999 12.654 2.571 7.237 2.341 8.508 
15 1.651 4.066 4.092 12.356 2.621 7.376 2.423 9.482 
16 1.672 4.428 4.168 13.123 2.653 6.712 2.476 8.792 
17 1.690 4.196 4.232 11.731 2.684 7.210 2.528 8.719 
18 1.708 4.113 4.303 12.489 2.710 6.342 2.591 9.608 
19 1.723 4.005 4.384 15.178 2.734 7.033 2.653 9.815 
20 1.736 4.045 4.446 13.261 2.770 7.752 2.691 9.078 
21 1.750 4.531 4.511 11.689 2.798 7.535 2.741 9.663 
22 1.763 4.260 4.545 9.002 2.828 7.803 2.785 7.961 
23 1.776 4.432 4.587 10.681 2.853 7.397 2.824 10.257 
24 1.787 3.839 4.623 12.226 2.883 6.922 2.873 9.043 
25 1.799 4.198 4.664 11.623 2.897 6.365 2.917 10.258 
26 1.813 3.530 4.708 12.612 2.913 7.024 2.958 9.786 
27 1.820 3.389 4.738 8.981 2.940 7.839 2.991 7.904 
28 1.827 4.013 4.761 11.195 2.963 8.450 3.024 9.305 
29 1.837 4.626 4.783 8.318 2.993 8.515 3.060 11.170 
30 1.845 4.474 4.806 11.310 3.020 9.014 3.119 13.602 

a Time is measured in units of 25 pivots. 

Because  o f  th i s  ve ry  s low decay ,  the  a u t o m a t i c  w i n d o w i n g  a l g o r i t h m  

leads  to  s ign i f i can t  underestimates of  ~i,t,A, even  w h e n  t he  w i n d o w  fac to r  c 

is as  l a rge  as 10 o r  20. W e  t h e r e f o r e  de f ined  a m o d i f i e d  e s t i m a t o r  rint, A b y  

e x t r a p o l a t i n g  PAA(t) p r o p o r t i o n a l l y  to  l i t  in t he  r e g i o n  b e y o n d  the  

w i n d o w ,  i.e., ~'i,t,,4 = M ~ A , ~ ( M ) / t  for  t >  M ,  a n d  c u t t i n g  off  t he  s u m  a t  a 

m u c h  l a rge r  t i m e  M *  of  o r d e r  Zexp: 

M 
~i,t.A = �89 ~,  flAA(t) + M ~ A A ( M )  l o g ( M * / M )  (C.8)  

t =  --~/" 
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(Since M, M* >> 1, we approximated the second sum by an integral.) Here 
M is defined, as before, by the automatic windowing algorithm. In the 
absence of any precise knowledge of rexp, we took M * =  N/f, luckily ~i.t,A 
is not very sensitive to the choice of M*, because of the logarithmic 
dependence and because ~AA(M) ~ 1. 

In Table X we show the results for a typical run (d = 2, N = 80,000) for 
the observables A =R~,  R~, R~, T K a r p _ L u b y ,  R = 150 as a function of the 
window factor c. Time is measured in units of 25 pivots. Note that: 

(a) The standard windowing estimates ~t,A are a factor 2-3 smaller 
than the modified estimates ~int,A, e ve n  at c = 20-30. 

(b) The estimates Ti.t.A are slowly but relentlessly increasing as a 
function of c; it is perfectly plausible that they will double or 
triple by the time c reaches infinity. 

(c) The estimates ~i,t,a are roughly stable as a function of c as soon 
as c > 4. However, they do show some fluctuation, because they 
are based on extrapolation from a single noisy point/$Aa(M). 

We therefore chose as our final estimate the average of ~,t,A for the 11 
values c = 20, 21,..., 30; by taking the average, we reduce the fluctuations 
mentioned in (c). 

This whole procedure is, of course, inelegant and ad hoc. But it does 
work reasonably well: we expect that the estimates of r=.t,A are accurate to 
about 10%. This is not good enough for a serious study of dynamic critical 
behavior; but it is good enough for our present purpose, which is merely 
to set error bars on the static quantities A. In the future we hope to devise 
better methods for analyzing time series with slow decay of the autocorrela- 
tion function. 

A P P E N D I X  D. R E M A R K S  ON THE F I E L D - T H E O R E T I C  
E S T I M A T E S  OF U N I V E R S A L  
A M P L I T U D E  RATIOS 

The critical exponents and universal amplitude ratios associated with 
polymers in a good solvent can be extracted from any family of theories 
which intersects transversally the domain of attraction (=  stable manifold) 
of the good-solvent fixed point H~s. One such family--which has no 
special status at H *  s, but is computationally convenient--is the continuum 
Edwards model (or what is equivalent, the n = 0  continuum ~o 4 field 
theory)J 12) This model becomes critical (i.e., crosses the stable manifold of 
H ' s )  when its bare coupling constant (self-avoidance parameter) z tends 
to oo. 
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There are two main approaches to the quantitative study of  the con- 
t inuum Edwards model in the limit z ~ oo: 

�9 Perturbation expansion in the coupling constant z at f ixed dimension 
d = 3  (o1" d = 2 ) .  In this case the problem is to estimate the 
asymptotic behavior as z ~ oo from the first few terms of  a perturba- 
tion expansion around z = 0. 

�9 Expansion in e = 4 - d .  Here the critical exponents and limiting 
amplitude ratios, which correspond to the limit z--,  0% can be 
obtained directly from a suitable renormalizat ion-group analysis. 
The problem is then to extrapolate to e = 1 (or e = 2). 

In this appendix we want to summarize the results for the universal 
amplitude ratios R - -  6 ( R ~ ) / (  2 R e), ~*, and ~ *  which have been obtained 
by each of these methods, and to make some comments  on their extra- 
polation. 

1. Perturbation expansion at f ixed dimension d =  3. Let c~n(z ), as(Z), 
and h(z) be the conventional expansion and second virial factors of  the 
cont inuum Edwards model. One then has 

It(z) = o(2s(z)/a~(z) (D.1) 

7t(z) = zh(z)/Otas(Z) (D.2) 

~n(z) = zh(z)/aa(z) (D.3) 

The known perturbation series in d =  3 are as follows (91'11~ 

2 (~---~5 97n~z2 ~ t ( z )  = 1 - ~ z + ~ /  

+ 0.056588z 3 - 1.2202z 4 + O(z 5) (D.4) 

~(z)  = z - 1769 - 896 ~ z2 + 25.5896415457z 3 + O(z 4) (D.5) 
105 

7tn(z) = z - 254 - 128 ~ zZ + 26.1049923667z 3 + O(z4 ) (D.6) 
15 

Crude estimates of  R * = b t ( o o )  can be obtained from the [1 /1 ]  and 
[2 /2]  Pad6 approximants 

1 + (554/105 - 3395n/2592) z 
Rt~/ll(z) = 1 + (16 /3 -3395n /2592)  z (D.7) 

1 + 8.08283z + 10.5132z 2 
RE2/2~(z) = 1 + 8.13998z + 10.9087z 2 (D.8) 
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* ~ 0.9531 and * yielding ~[~/~ R[2/23~0.9637. More sophisticated extra- 
polations have been performed by Shanes and Nickel, t~as~ who find R * =  
0.9607 4-0.0018. (Our Monte Carlo value is 0.9594 4-0.0012.) 

Likewise, crude estimates of ~*-~F(o~)  and ~ * - ~ R ( ~ )  can be 
obtained from the [ 1/1 ] Pad6 approximants 

7, 

~t'/ '~(z) = 1 + [(1769 - 8 9 6  x/r2)/105 ] z (D.9) 

z 

~R'tu'l(z) = 1 + [ ( 2 5 4 -  128 v/~)/15] z (D.10) 

yielding * ~ 0.2092 and * ~ [ ~ / ~ 1  ~R,r~/~j"~0.2055. (Our Monte Carlo values 
are 0.2471 + 0.0003 and 0.2322 + 0.003, respectively.) 

We can also try the "direct renormalization" approach of des Cloizeaux 
et al.(92): define the "effective exponent" erR(z)= ( z / 2 )d log  ot2(z)/dz, which 
approaches the limiting value a* = 2 v -  1 as z ~ oo; reexpress ~ and ~'R as 
functions of aa;  and extrapolate these series to err = a * ,  using the best 
estimate of v. If we carry out this last step by the most naive method 
imaginable--namely, straight evaluation of the cubic polynomial at or* = 
2(0.5877)-1 =0.1754 we obtain ~*=0.2483 and ~*=0.2379,  which is 
not bad at all for such a short series. 

2. Expansion in e = 4 - - d .  The limiting universal ratios bt*, ~*, and 
~* can be evaluated in dimension d - - 4 -  e in powers of e; the results are 46 

R* = 1 - - ~ -  0.030628e- + O(e 3) (D.11) 

e e 2 (  77 ) 
~ * = w  ~-~+log2 +O(e 3) (D.12) 

~ ~2( 25 ) 
~ * = ~ + ] - g  ~ + l o g 2  +O(e 3) (D.13) 

Evaluating these at e = 1, 2, 3 yields 

R* ~ 0.9590, 0.8567, 0.6931 (D.14) 

~* ~ 0.2686, 0.8243, 1.6672 (D.15) 

~u, ,,~ 0.2660, 0.8139, 1.6438 (D.16) 

4~ The expansion for I~ is from ref. 155; see also Eq. (13.1.60) of ref. 12. The expansion for ~,~ 
is from Eq. (5.35) of ref. 184; see also Eqs. ( 12.3.102)/( 13.1.11 ) of ref. 12. [ In these works, 
~ *  is called g*. To establish the connection, compare Eqs. (5.1.107) and (13.1.2) of  ref. 12.] 
The expansion for ~ *  can then be derived from these two. Alternatively, it can be found 
as the limit r / ~  oo of Eq. (4.15a) of ref. 185. 
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(We remark that the [ 1/1 ] Pad6 approximants for all three quantities have 
poles between e = 0 and e = 1, and so are unreliable for e/> 1.) 

Des Cloizeaux (ref. 184, footnote 7; see also ref. 12, pp. 541, 557) has 
suggested to augment the e-expansions (D.11)-(D.13) by enforcing the 
known exact values at d =  1 (e=3) ,  which are bt= 1/2, ~*=2/n~/2.~ 
1.1284 [see (2.20)], and ~g*=(2/n)~/2~0.7979. This produces the cubic 
polynomials 

N* = 1 - e _ 0030628e 2 - 0.007152e 3 
96 ' 

) ~ g * = g + ] ~  ~ + l o g 2  + 2 7 \ n , / 2 2 5 6  

e 25 

Evaluating this at e = 1, 2 yields 

~* ~ 0.9518, 0.7994 

~* ,~ 0.2486, 0.6647 

~*  ~ 0.2346, 0.5633 

(D.17) 

1og 2)  (D.18) 

256321169 log 2)  (D.19) 

(D.20) 

(D.21) 

(D.22) 

For ~* this modification has actually worsened the agreement with the 
Monte Carlo value, both in d =  3 and in d--2.  On the other hand, for 7 t* 
and 7 t* this "modified e-expansion" prediction is amazingly close to the 
correct value, both in d = 3 and d = 2. It would be useful to obtain a better 
understanding of whether this is a coincidence or not--perhaps by calcul- 
ating the O(e 3) term in ~*. 

APPENDIX E. A RENORMALIZAT ION-GROUP EXAMPLE 

In Section 5.2 we argued that J4,, the unstable manifold of the 
Gaussian fixed point H*, has no special status at the good-solvent (non- 

t r iv ia l )  fixed point H ' s :  like every other RG trajectory (except for a 
measure-zero set of exceptional trajectories), it approaches H*s  tangent to 
the leading irrelevant direction; but barring a miraculous coincidence, it 
presumably also has nonzero components (with respect to the nonlinear 
scaling fields at H~s) in all of the subleading irrelevant directions. In this 
appendix we want to present a simple "toy RG flow" that illustrates this 
behavior, which we conjecture to be generic. 
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More precisely, we want to consider two trajectories of the Wilson RG 
flow: 

(a) Let .~Curit be the intersection of vgu with the critical surface. This 
is an RG trajectory (=  one-dimensional invariant manifold) running from 
H* to H*s.  

(b) Suppose for simplicity that in the neighborhood of H*s  there 
exists a smooth (e.g., C ~) change of variables that linearizes the RG flow 
in this neighborhood (thereby defining "nonlinear scaling fields"); such a 
linearization always exists provided that certain "nonresonance" conditions 
are satisfied. (ls6-1sS) One can then discuss the special trajectories that 
correspond to the coordinate axes in the nonlinear scaling fields; in general 
(i.e., again barring "resonances") these are the only trajectories that are 
smooth in a neighborhood of H~s,  since generic trajectories will contain 
fractional powers. (If x ~  e -~1 and y ~ e - b t ,  then y ~ xb/a; and this is a 
smooth curve near x = y = 0 only if either b/a or a/b is an integer.) So let 
Jgl be the trajectory passing through H~s corresponding to the leading 
irrelevant nonlinear scaling field. 

We then claim that "generically" ,~tcrit does not coincide with Jg~. 
More generally, we claim that--irrespective of any nonresonance assump- 
tion at H~s--"gener ical ly"  ,//r is not smooth at H~s. 

Here is a simple two-dimensional example that illustrates the point: 

dx 
=ax(1 - x )  (E.la) 

dt 

& 
dt 

-- b y + f l x 2 ( 1 - - x )  2 (E.lb) 

with a, b > 0  and fl:~0. (For simplicity we consider a continuous-"time" 
RG flow. Analogous examples can easily be constructed for a discrete- 
"time" RG map.) This example can be viewed as a caricature of the RG 
flow on the critical surface for a scalar field theory in dimension 3 < d <  4: 
here x corresponds roughly to a (a 4 interaction, while y corresponds to a 
cp 6 interaction; all. higher irrelevant interactions are ignored. 

The map (E.1) has two fixed points: 

(i) A "Gaussian" fixed point H* at x = y  = 0 with linear part 

o) 
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The stable manifold J / ,  is exactly the set x = 0, and the flow on it is linear 
with eigenvalue - b  [i.e., y ( t ) =  Ce-b']. The unstable manifold Je'u is the 
unique trajectory leaving H *  tangent to the x axis. 

(ii) A "good-solvent"  fixed point  H ~ s  at x = 1, y = 0 with linear par t  

(o o o)  
If a/b is irrational, Sternberg's linearization theorem (~86) guarantees the 
existence of two special trajectories which are smooth (i.e., C ~)  at H ~ s ,  
and on which the flow is a C ~ function of either e - a '  or  e -b', respectively 
(rather than a combinat ion  of both,  as is the case for generic trajectories). 
One of these special trajectories is simply the line x =  1; on it the flow is 
linear with eigenvalue - b  [i.e., y ( t ) =  Ce-b']. The other special trajectory 
arrives at H ~ s  tangent to the x axis; it can be computed  systematically in 
Taylor  series in 1 - x  by looking for a smooth  invariant  manifold 

y = c2( 1 - -  x )  2 "4- c 3 (  1 - x )  3 "4- . . .  (E.2) 

Let us call this latter manifold Jr ( I f  a < b, then this manifold does indeed 
correspond to the leading irrelevant nonlinear scaling field at H *  s.) 

We now claim that J~/,, does not coincide with ~ .  Proof." First solve 
(E. la)  to obtain 

1 
x(t) = 1 +e  -aIr-t~ (E.3) 

Then solve (E. lb)  by Green's  functions: 

y ( t ) =  Ce-b' +f l  e -b( ' -" )x( t ' )  2 [1 --x( t ' )]2 dt ' (E.4) 

Clearly the integral in (E.4) is a bounded function of t; so the only solution 
y(t)  which is bounded as t---* - o o  is the one with C = 0 .  Therefore, this 
solution must be s#,.  On the other hand, if b < 2a, then as t--* +oo the 
integral in (E.4) behaves (to leading order)  as 

e_b, ; ~ e - ( 2 a - b ) t "  

-oo (-1 +--~2~,~4 dt' (E.5) 

So the C =  0 solution has y ( t ) ~  e -b' as t--* +oo. Thus, y ~ (1 - x )  b/~ near 
H ' s ,  so "/~'u is not smooth  at H * s  if b < 2a and b v~ a, a/2, a/3 ..... I- Conver-  
sely, the manifold dr is given by C =  - f l x  the integral in (E.5), and this 
curve runs o f f t o  y =  - sgn( f l )  x oo as t--* - o o . ]  Q E D  
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This example obviously has some special features, but  we believe that 
its behavior is generic. For  example, the four eigenvalues at the fixed points 
are determined here by only two numbers a and b, and the eigenvectors at 
the two fixed points are identical; but  these features arise from the choice 
of a quadratic right-hand side for the x equation along with the absence of  
x -y  cross-terms in the y equation, and can easily be altered. More crucially, 
the x equation is here independent of  y, and the y equation is linear in y; 
these are the features that make our  example exactly soluble. But it seems 
clear that the nonsmoothness  of  r at H *  s will persist under perturba- 
tions of  (E.1) that destroy the exact solubility. 

More generally, we conjecture that the behavior observed in this 
example is generic: that is, in the space of  all dynamical systems having a 
pair of  fixed points H1, H2 and a trajectory ~,ctrit running from H 1 to H2, 
the systems for which ,/~Curit is nonsmooth at H2 will constitute a dense open 
set (or at least a dense G6). 47 This conjecture seems to us almost trivially 
true in the space of  C o~ dynamical systems, since neighborhoods of H l and 
HE can be "glued together" quite arbitrarily; there need be no matching 
between jg,,rit (defined in terms of  its behavior at H i )  and Jgl (defined in 
terms of  its behavior at H2). Less trivially, we suspect that  the conjecture 
is true also in the space of real-analytic dynamical systems (and also in the 
space of polynomial dynamical systems of  a fixed sufficiently large degree); 
this is what the example (E.1) is intended to illustrate. 

The foregoing reasoning is couched in the language of  the Wilson 
renormalization group. What  does it imply for the field-theoretic renor- 
malization group? Recall that  in Section 5.2 we argued that the field- 
theoretic RG is nothing other than the Wilson RG restricted to the 
unstable manifold of  the Gaussian fixed point and then rewritten in terms 
of"renormalized" parameters. Concretely, what this means is the following: 
Choose some definition of  "renormalized coupling constant" g (e.g., a 
suitable combinat ion of  correlation functions at suitable momenta) ;  this 
defines g as a function of  the bare cutoff Hamiltonian H. If  we have chosen 
a definition based on correlation functions at nonzero momenta ,  then we 
may expect g to be a smooth function of  the parameters in H, even on the 
critical surface. 48 (In our simplified example this means that g is a smooth 
function of  x and y.) We must further assume that g restricted to ,//r is 

47 If there are two or more relevant directions at H~, then generically ~#,~,~t should be non- 
smooth also at H~. Physically, this means that the critical bare mass m0c is a nonsmooth 
function of the bare (~4 coupling 2 in dimension d<4. 

4s If g were not a smooth function of the parameters in H, then one could not expect fl(g) 
to be smooth either. However, this issue is the weakest point in our argument; the smooth- 
ness of g(H), for different definitions of g, deserves further investigation. 
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monotone. We then consider the restriction of the Wilson RG flow to 
crit ~ ' ,  , and write 

dg 
- f l ( g )  (E.6) 

dt 

This defines the field-theoretic fl-function; it can be computed immediately 
(at least in principle) from the original (Wilson) RG flow, the equation of 

erit ~t ' ,  , and the function g(H). 49 Now, if fl(g) were regular (i.e., C ~176 at g* 
with fl(g*)= 0 and slope i f (g*)= - a  < 0, then g ( t ) -  g* would be a C ~ 
function of e - a '  at large positive t. But we know [at  least in our example 
(E.1)] that y ( t ) - y * ~ e - b ' ;  so if g(H)=g(x,  y) depends smoothly and 
nontrivially on y, then g(t) will contain e -b' terms as well. Hence fl(g) 
cannot be regular at g*, except in the extreme case that g(x, y) depends 
only on x and not on y. Moreover, even this would not work if the RG 
flow were a little more complicated, such as dx /d t=ax(1-x) (1  +0ty2). 
Probably also in such a case there would exist some special functions 
g(x, y) for which the fl-function would be regular at g*, but these would 
be very difficult to describe. 

We conclude that (barring miraculous coincidences) the field-theoretic 
fl-function cannot be regular at g*, except possibly for certain extremely 
special choices of g(H). Now, it is conceivable that dimensional regulariza- 
tion with minimal subtraction can be given a nonperturbative meaning (see 
footnote 43 above), corresponding to some specific choice ofg(H) ,  and that 
this particular g(H) will turn out to be one of the special choices for 
which fl(g) is regular at g* (as hoped for by Sch/ifer(166"167)). However, we 
consider this scenario unlikely, because dimensional regularization with 
minimal subtraction is a prescription at the Gaussian fixed point H*,  and 
the behavior there has in general no relation to the behavior at the non- 
trivial fixed point H ' s - - t h a t  is what the example (E.1) illustrates. 
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